
Narrative Generation in Entertainment: Using Artificial Intelligence Planning 
 
Richard A George 
 

Email: ricgeorge21@gmail.com 

 
Abstract 

From the field of artificial intelligence (AI) there is a growing stream of technology 
capable of being embedded in software that will reshape the way we interact with our 
environment in our everyday lives. This ‘AI software’ is often used to tackle more 
mundane tasks that are otherwise dangerous or meticulous for a human to 
accomplish. One particular area, explored in this paper, is for AI software to assist in 
supporting the enjoyable aspects of the lives of humans. Entertainment is one of 
these aspects, and often includes storytelling in some form no matter what the type 
of media, including television, films, video games, etc. This paper aims to explore the 
ability of AI software to automate the story-creation and story-telling process. This is 
part of the field of Automatic Narrative Generator (ANG), which aims to produce 
intuitive interfaces to support people (without any previous programming experience) 
to use tools to generate stories, based on their ideas of the kind of characters, 
intentions, events and spaces they want to be in the story. The paper includes 
details of such AI software created by the author that can be downloaded and used 
by the reader for this purpose. Applications of this kind of technology include the 
automatic generation of story lines for ‘soap operas’. 
 
Keywords: Artificial Intelligence, Planning, Entertainment, Narrative, Generation, 
Automatic, Story, Storytelling, ANG 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
http://dx.doi.org/10.5920/fields.2015.118 
 
Article copyright: © 2014 Richard A. George. This work is licensed under a  Creative Commons Attribution 4.0 International  
License 
 

   
  



Introduction 
Artificial Intelligence (AI) refers to the intelligence demonstrated either by machines, 
or in this case, software, and incorporates functions such as reasoning, planning, 
learning, natural language communication, perception and robotics. Through 
advancements in artificial intelligence we have been able to accomplish many things, 
from performing tasks that would otherwise be dangerous for humans to take on, to 
automating mundane and tedious types of work. Through AI we will be able to tackle 
a vast assortment of more challenging and interesting problems in the future, such 
as more accurately predicting the weather, providing effective driverless 
transportation and eventually creating robotics so advanced that they will be able to 
rival the thought process and complexity of the human brain (Turner, n.d.).  
 
A particular area of interest with room to grow is in finding new and interesting ways 
to use these concepts to provide a more automated process and intriguing 
experience in entertainment. With this in mind, this paper concerns the automatic 
narrative generation for storytelling.  
 
The work behind this paper has an eventual goal of enabling software to 
autonomously generate dialog amongst characters using only a set of predefined 
attributes. For example, a user could create characters each with their own set of 
parameters including gender, age, experiences, personalities, ambitions, goals and 
different relationship variables between each other. The AI software would generate 
dialog between them intelligent enough to flow based on the subject of the 
conversation, with each character involved producing a meaningful response to what 
was said previously for a more natural simulation. 
 
In order to bring this type of functionality to a software application, the idea must be 
brought back to the most basic aspects of storytelling. This is known as the fabula of 
a story, and consists of the most basic elements. These elements generally include 
actions, or a sequence of events that are carried out between characters and other 
objects in the story to create the story’s skeleton. Therefore, this project aims to use 
various techniques in AI to allow a user with no previous programming or technical 
experience to shape a story based on their own ideas and story elements. 

 
The Problem 
Storytelling is traditionally produced manually by talented writers with both a natural 
ability, as well as skills developed during their education. These stories are for the 
most part developed using a writer’s experiences, personality, morals, ambitions and 
perhaps most important, their creativity. Creative writing is therefore a process that 
takes quite some time to complete, and varies heavily based on the writer.  
 
Many of these prerequisites required for creative story-telling can be artificially 
reproduced using predefined variables, allowing a piece of software to intelligently 
create narration between characters and tell a story.  

 
Targeted Audience 
The audience for this product may include companies in the entertainment industry, 
such as television programs or children’s networks with cartoons. For example, this 
software could be used to take characters from television series and create unique 
scenarios between them to be used for episodes. Similarly, a film script could also 



be generated using predefined characters and situations between them. This 
technique would most likely be more successful with drama genres, as they focus 
heavily on character development and interaction rather than action sequences. 
 
Stories in video games could also be uniquely generated using this concept. Game 
developers could use the same character techniques to develop stories and 
interactions between different characters in the game. This could provide a unique 
story and user experience for each user that plays the game, offering new levels of 
re-playability, an important aspect to consider when purchasing a game. 
 
This idea could also be used to generate storytelling for short books or comics. 
Simple stories used in children’s books or interactive comics and graphic novels 
used on smart phones and tablets could also be uniquely generated with this 
method. 

 

State of the Art 
Research Groups 
The work of three particular research groups are worth highlighting. They are 
currently working within a similar field of artificial intelligence in entertainment while 
incorporating human psychology and interaction. These research groups are all 
currently active and have undertaken many projects in various aspects of content 
generation. 

 
Teeside University 
Dr Julie Porteous leads a research group at Teeside University that looks into 
intelligent virtual environments (IVE). The group specifically deal with Human-
Centred Multimedia and Human-Centred Interfaces, and are mostly involved in 
entertainment computing, with some work in health informatics. 
 
This group is most noted for their work on IRIS, or Integrating Research in Interactive 
Storytelling. This project was aimed at achieving breakthroughs in the understanding 
of interactive storytelling and the development of the necessary technologies 
involved. It was designed to make interactive storytelling technologies in regards to 
performance and scalability in order to support the production of real interactive 
narratives. It also aimed to make the new generation of these technologies more 
accessible to authors and other types of content creators of various disciplines.  
 
The group is currently working on a project called MUSE, or Machine Understanding 
for Interactive Storytelling. This project will introduce a new method of navigating 
through and understanding information through three-dimensional interactive 
storytelling. This system can take in text-based input of natural language and 
process it into knowledge representing characters, their actions, plots and the world 
around the characters. These are then rendered as 3D worlds that the user may 
navigate through with interaction, re-enactments and gameplay. (IVE Lab, 2011). 

 
Liquid Narrative Group 
The Liquid Narrative Group in North Carolina State University works with procedural 
content generation allowing them to create content for games and other virtual 
environments. Similar to this project, they use models of narrative to build stories 



and tell them automatically. At the core of their work and research is Narrative 
Structure and Comprehension, which looks into computational models of narrative, 
its structure and learning how we build mental models of stories while we produce 
and comprehend them.  
 
The group is also responsible for a project entitled Interaction in Automatically 
Generated Narratives, involving the creation of interactive experiences within a 
progressing story. It required the development of stories allowing user input to 
dynamically alter the actions that take place during the story line. This project was 
ended in 2005 (Liquid Narrative Group, 2014). 

 
USC Institute for Creative Technologies 
The final research group is Jonathan Gratch and his group from USC Institute for 
Creative Technologies. As a computer scientist and psychologist, his research 
consists of developing human-like software agents for virtual training environments. 
These methods are used to create psychological theories of human behaviour. He 
specifically investigates how algorithms can be used to control human behaviour in 
virtual environments.  
 
One particular area of interest is emotion modelling, where Gratch looks into the role 
emotions play in the believability and immersion of a simulated story’s world. In the 
Emotion Project, the group develops models that allow artificial characters to display 
an emotional response to events that occur within the story’s world and respond with 
actions and behaviours that are consistent with that of humans in an emotional state. 
 
In the Virtual Human Project, research in intelligent teaching, natural language 
generation and recognition, interactive narrative, emotional modelling and graphics 
and audio are all combined to provide a realistic and compelling training 
environment. The virtual humans can interact with the trainee and provide emotional 
responses to their actions (Gratch, 2014). 
 
Existing Systems 
Generator of Adaptive Dilemma-based Interactive Narratives (GADIN) 
The GADIN (Generator of Adaptive Dilemma-based Interactive Narratives) system, 
developed at the University of York, is one method currently used in interactive story 
generation, and is currently being used in games and television. Its purpose is to 
satisfy essential criteria for interactive narrative used by other systems that would 
otherwise be incapable of being addressed. 
 
With this system implemented, the story creator is only required to provide basic 
information regarding the domain background, such as information on characters 
and their relationships, actions and problems. Instances are then created of these 
problems and story actions and a planner generates a sequence of actions that lead 
up to a problem for the characters involved (which in this case, can also be the user). 
This goes a step further by allowing the user to provide input on choosing their own 
actions, allowing the system to adapt future storylines according to past behaviour. 
The effectiveness of the stories generated in this way are evaluated using criteria 
such as interestingness, immersion and scalability (Barber, 2008). 
 



Suspenser 
Suspense is a very important aspect of storytelling by readers and listeners. While 
there has been extensive research into ways of automating narrative, the subject of 
adding depth to these stories, such as suspense to evoke cognitive and affective 
responses by readers is severely lacking.  
 
Suspenser is a specific framework in development by the Liquid Narrative Group at 
North Carolina State University designed to help research and develop a system that 
can produce a narrative designed specifically to evoke suspense from the reader. 
Similar to GADIN, this system can take in a data structure containing a plan 
comprised of goals of the story’s characters and actions that they can perform in 
pursuit of these goals. The system uses a plan-based model of comprehension to 
determine the best way to output the final content in the story to best manipulate the 
reader’s level of suspense. This is done through adopting theories developed by 
cognitive psychologists. 
 
Suspenser takes three elements as input before creating a story, the first being the 
fabula, or the raw material of a story. The second input is a point t in the story’s plan 
corresponding to a particular point where the reader’s suspense will be measured. 
The final is the desired length of the story, so that story elements, actions and 
suspense can be adjusted accordingly. With this information the system can 
determine the sjuzhet, which refers to the way the story is organised. More 
specifically in this case, it includes the content of the story up to the point t allowing 
the reader to infer a minimum number of complete plans for the character’s goal. 
This is done in accordance with psychological research on suspense. (Cheong & 
Young).  

 
Actor Conference (ACONF) 
Narrative plays an important role in understanding the events of our lives on a daily 
basis. The ability to generate this narrative automatically can have a huge impact on 
virtual reality systems designed for entertainment, training or education. This concept 
is complicated by two main problems: plot coherence and character believability. The 
coherence of the plot refers to the appearance that events in the story all lead 
towards some outcome or goal. Character believability refers to the appearance that 
the events in the story are driven by the attributes of the characters within the story. 
There are currently many systems capable of achieving only one of these goals, but 
the Actor Conference system (ACONF) presents a different approach to automatic 
narrative generation with the ability to generate stories with both problems 
addressed. 
 
The ACONF system is specifically designed to exploit the advantages of both 
character-centric and author-centric techniques and ideas to achieve both problems 
of plot coherence and character believability. It uses a decompositional, partial-order 
planner to develop and assemble a sequence of actions that make up the story. 
These actions represent the way the characters will behave as part of this story. 
Using a planner for this allows for the identification of casual relationships between 
different actions, as well as providing an ordered sequence of operations as output 
that can be directly executed by agents (or characters) in this virtual world. (Riedl & 
Young, 2003). 

 



AI Techniques underlying ANG 
The main AI technique we will focus on is automated planning, as this process is 
what builds the story from its components. Automated planning or AI Planning is a 
part of the field of artificial intelligence that involves the automated solving of 
problems through the generation of action sequences or strategies. Plan generation 
is followed by plan execution by intelligent agents such as autonomous robots and 
vehicles. Planning solutions are often complex, and are constructed or discovered 
using various types of algorithms. A basic planning problem has a given start state, 
goal conditions and set of actions that may be carried out by the intelligent agent. A 
sequence of actions leading from the start state to the goal is then discovered. The 
aspects of the problem that are uncertain are the effects of the action, knowledge of 
the system state and a sequence of actions that may guarantee the achievement of 
the goal. 
 
Similar to automatic narrative generation, interactive storytelling researchers have 
been using planning systems and has become the most common approach. 
Planning provides a well-rounded approach to this problem for many reasons. 
Narratives, which are also the basis for interactive storytelling, may be broken down 
into three levels. The lowest level is called the fabula, and is defined as ‘a series of 
logically and chronologically related events’ (Boutilier). Because planning consists of 
a series of actions that work towards a goal, it represents a good model for the 
fabula. 
 
Planning Domain Definition Language (PDDL) is the language used to define and 
execute AI Planning, and is generally used as standard. It uses a combination of two 
files, including the ‘domain’, which holds all of the declarations needed. This includes 
variables of different types called predicates, as well as actions that can be carried 
out. The second file is called a ‘problem file’, which uses the variables and actions 
declared in the domain file along with a ‘start’ and ‘end’ state. When used with a 
planner, the problem file will declare the initial state of the problem, and the planner 
will use the domain declarations to make legal decisions governed by that file to 
achieve the end state (McDermott, et al., 1998) (see appendices 12-1 and 12-2 for 
this project’s PDDL domain and problem files). The use of PDDL therefore dictates a 
host of other requirements to ensure the project can be successful.  

 
Requirements Specification 
User Requirements 
This project is not governed by any specific user (individual or company), and 
therefore has user requirements specified by myself, as well as the 
recommendations of this project’s supervisor. These requirements for the software 
prototype portion of this project are as follows: 
 
Tools 
Using Prolog logic programming language is essential to creating a prototype for this 
product. Prolog is a logic programing language that will allow me to declare 



relations with specific facts and rules, as well as create domains and problems that 
can be tested using search algorithms.  
As discussed earlier, PDDL will be the main method of testing problem files and 
programming characters with many different attributes.  
 
For a possible user interface, Java will be required to ensure it can be as effective as 
possible. It will require looking into ways of having Java communicate with other 
types of necessary languages to allow the creation of characters and attributes in 
this way. Doing so will allow any user, even without a programming background, to 
be able to create characters for storytelling. 
 
It will also be required to learn methods of connecting the planning engine to a shell 
to translate the output into natural language for demonstration purposes.  
 
Software 
Eclipse IDE will be used to program in Java for a user interface allowing the creation 
of characters. If time permits, an interface will be created that users can use to 
create characters, attributes and relationships that can be translated into PDDL 
using Java. Java with Swing should allow for a user-friendly end product that would 
be relatively straight-forward to understand for the average user. Java is also cross 
platform and can communicate with many other programming languages, keeping 
options open to unexpected requirements as progress is made through the project. 

Planners will also be utilized to plan out steps from storytelling problem files and 
provide a possible output solution for a story. This will need to be translated into a 
script using Java. 

Product Specification 
Product Specification 
Interface 
The prototype will include an interactive interface to allow a user to create their own 
characters and other story elements with specific attributes and relationships to 
generate their own stories with the help of planners. This would be ideal, as it would 
prove that any number of characters and scenarios could be generated using this 
idea, and show that anyone, with or without a development background, can be 
capable of producing content in this way.  
 
Data Definition 
The software prototype will be capable of receiving user input in the form of story 
element objects and characters and their relationships between one another. These 
variables will be predefined to ensure that they have the appropriate effect on the 
characters and the story’s content. This will output a planning problem in PDDL with 
various specific states and parameters used to define the particular story. Actions 
may also be defined to provide specific effects of particular events that may occur. 
 
These PDDL files will be able to be parsed by various planners available across the 
web. An attempt to integrate one or more planners into this application will be made 
to try and keep everything in one area and application. Once a plan is created, the 
software will be able to parse the steps and adjust it into the form of a narrative with 



a clearly define sequence of events, with variables and solutions based on the user’s 
initial input. 
 
Once content is generated, the application will attempt to be hooked up to a shell 
capable of processing text into natural language. This shell will then be capable of 
reading out the dialog with different characters for demonstration purposes. 
 
Functional Specification 
Services 
The final product of this project will be a software prototype designed to prove the 
concept of automatic narrative generation based on a set of predefined attributes for 
characters, goals and stories. This application will be programmed using characters 
with variables including gender, age, experiences, personalities, ambitions, goals 
and different relationship variables between each other. Ultimately, stories generated 
in this way will be able to be read out loud by natural language processing software. 
 

Development Method 
This project will be developed using a software prototyping methodology. A 
prototype in this case refers to a piece of software that is in its early stages designed 
to test a concept or process that can be learned from. This is incomplete from a final 
piece of software as it only focuses on achieving specific goals within a future larger 
project. The process of software prototyping therefore involves creating prototypes 
built to simulate core aspects of the final application that is in development. 
 
This type of software methodology is useful when assessing the requirements that 
will make the final product successful. It also allows developers to test the feasibility 
of the product without having to construct the entire system, thus saving time and 
money.  
 
This process can be broken down into four phases: 
 

1. Identify Initial Requirements. 
Also referred to as a prototype plan, this phase is used to determine the basic 
objectives of the prototype including the necessary input and output. From 
here the prototype’s functionality may also be defined. 

2. Development. 
During this phase the first prototype is developed as an executable piece of 
software containing the user interfaces and possibly very limited functionality. 

3. Evaluation. 
In the evaluation phase, everyone involved with determining the final product, 
including customers and end-users, review the prototype and provide 
feedback for changes and additional functionalities to ensure the development 
is going in the right direction. 

4. Enhancement. 
Based on the feedback received the software specifications and prototype can 
be improved. This means that steps 2 through 4 may be repeated as 
necessary. 

 



Prototyping may also be broken down into several different types, including 
throwaway, evolutionary, incremental, operational and extreme prototyping. This 
project will focus on using throwaway prototyping. 
 
Throwaway prototyping involves creating a model of the core functionality of the 
system at an early stage in development. Once all necessary preliminary 
requirements are gathered and understood, a simplified working version of the 
application is created to visually demonstrate the capabilities of the system. 
 
This type of prototyping can be completed quickly and is useful if some aspects of 
the requirements specification is not fully understood. This means that these 
requirements can be explored and identified in depth and tested very quickly before 
any heavy development takes place. 
 
Generally, once a working model is demonstrated and agreed upon, it is essentially 
discarded to begin formal development of the system. As the final goal is to create a 
prototype, the development process will terminate after the prototyping stage. 
 
Prototyping does have its disadvantages however. Its insufficient analysis can 
sometimes cause developers to lose focus on the final solution by overlooking 
superior solutions that may be better to maintain. Developers may also spend too 
much time and money developing a prototype, or become attached to it making it 
difficult to throw away. In this case sometimes developers would try to alter 
prototypes for use as a final product when it does not provide an acceptable 
underlying architecture. If moving onto a final product, these problems would have to 
be taken into consideration. However, in this case, throwaway prototyping is perfect 
for ensuring that the core goals of the product are understood, and can prove the 
concept visually and audibly to users of the system (Beaudouin-Lafon).  

 
Design 
Use-Case Diagram 
Figure 1 refers to a Use-Case diagram, which outlines all of the various actions that 
can be carried out by the user, and how they are achieved using both the software 
itself and an additional planner. A more in depth analysis of how every aspect of the 
system works together is described in the Implementation section of this document. 
 
 



 
 
Figure 1. Use Case diagram outlining the potential actions that may be carried out by the user and the software. 

 
Implementation 
After research into the feasibility of producing a product on this scale, even as a 
prototype, some compromises had to be made. Rather than creating an application 
with the ability to create characters with different personality traits, research lead me 
in a different direction with a heavy focus on what defines a story. This 
implementation therefore revolves around the ability for anyone without programming 
to build a short story using the programmed interface. These stories are created 
using a user interface to add story elements, from which a PDDL problem file is 
created. Together with a predefined domain, a planner is used to find a solution that 
can be converted into a narrative-like structure. 
 
Structure 
Stories are comprised of 8 main elements, including characters, places, things 
(objects), information (knowledge), goals, actions, a protagonist and an antagonist. 
The Story class has therefore been designed to hold this type of information, with 
array lists used to hold groups of characters, places, things and information. 
 



The Character class has been designed to hold extra information, including a 
name, a current location (place), a list of friends (characters), a list of things in their 
current possession, a list of objects they like, a list of objects they would prefer not to 
get rid of, and a list of information that they may have. All of these attributes can be 
added or removed by the user when adding characters to a story. 
 
The Thing class has a similar design, allowing each individual item to have a name 
and an initial location. The Place and Info classes simply contain a field for an 
appropriate name. The Goal class contains three Strings to be used for parsing, 
which include the first party involved (a Character or Place), the second party 
(Character, Thing, Info or Place depending on the first party), and a conjunction 
String such as ‘has’, ‘at’, ‘knows’, etc. 
 
User Interface 
 

 
 
Figure 2. The main user interface after all story elements have been inserted, and a story has been generated. 

 
The user interface begins with the main window for the ANGgui class, which is also 
the central location for creating and controlling every aspect of a user’s story. This 
can be seen in Figure 2 as a full story with all elements filled in and generated. To 
begin, a user may use the ‘My Stories’ panel to add or remove a story, while giving it 
a name. The panel contains a list of all individual stories created by the user. 
Selecting a story will update all of that story’s information in all other panels to the 
right of the story.  
 



Once a story is created, the user may add any other item of their choosing. It is 
recommended to start with places, since both characters and things can have an 
initial location. Pressing the add button in the Places panel with display a simple 
window asking for the name of the place. Once added, the added places will appear 
in the list, and be added to the selected story. These places can be removed from 
the story and list by hitting the remove button. The Information panel works in an 
identical way. 
 
Using the add function in the Things panel will display a window requiring a name 
and a current location. If the item created is located at a particular place that was 
previously created, it can be selected here. If the item is meant to be in the 
possession of a particular character, the location should be set to ‘none’, as this 
function is controlled in the Character section. 
 

 
 
Figure 3. The ‘New Character’ interface with available objects from the story as parameters for the new 
character. 

 
Using the add character function shown in Figure 3 will display a new window with all 
of the character options. From here the user can add the character’s name and initial 
location based on the places added previously. There are also options to use 
previously added material to include a list of that particular character’s friends, items 
in their current possession, items they like, items they will not give up, and pieces of 
information they currently know. These items can be added or removed with the 
interface’s buttons and combo boxes. Selected characters from the list may also be 
edited and deleted as necessary.  
 
The Options panel contains an area to set the protagonist and antagonist of the 
current story. The protagonist is who will be used when the planner is looking for a 



solution, and the protagonist has been programmed to be the current thief in this 
particular story domain.  
 
The actions area is used to modify four specific available actions within a story, 
including examining things, examining places, talking about information and imitating 
dinosaurs (scaring other characters). Selecting one option in the list and pressing the 
edit button will bring up a special window for that action containing combo boxes with 
different relevant story elements that can be used in combination to add an effect to 
that action. 
 
Below the actions area is an option to add goals to this particular story, which 
determine the steps used by the planner to achieve them. This is important, as this 
determines how certain characters behave and interact with objects, places and 
other characters. Adding a goal will bring up a window asking to choose a character 
or a thing. If a character is chosen, the option to know, have, be at, etc. can then be 
chosen. Based on that selection, the appropriate set of objects added to the story will 
be available in the final area. For example, if a character is chosen with the word ‘at’ 
selected, then the final combo box will be populated with the list of places added to 
the story. This would subsequently create a goal requiring that at some point, the 
selected character must end up at the selected location. Likewise, if a Thing is 
selected, a location is the only goal it may have. 
 
Functions and Planner 
Once all elements of a story have been created, the user has the option to hit the 
‘Generate’ button, where a number of functions take place. 
 
The first of these functions is done in the CreateFile class, where all of the story 
information is parsed and outputted to a PDDL problem file using the appropriate 
syntax. This includes object declarations and types, as well as the entire initial state, 
including where characters and things are, which character currently has what 
object, what each character knows, etc. This file also contains the goals of the story, 
and is located in a new directory created in the project directory to house files 
associated with that particular story. 
 
Once created, a classed called PlannerFunctions uses the build in the Process 
class to run a specific command through the terminal without opening it. This 
command is to locate and run the ‘FF’ planner in the project directory. This command 
is also programmed to locate the pre-defined story domain, and the newly created 
problem file to be run through the planner. In order to gather further information 
about the domain and problem files, the planner is also run in a specific configuration 
to output additional information about every object created, every action with their 
effects, and the entire initial state. If the designed story has a solution and parses 
correctly, the planner will find it and output all of this information, including a list of 
steps to achieve the contained goals.  
 
This planner output is captured by the function and separated into three sections, 
including actions, objects/initial state, and steps. These three sections are then sent 
back to the main window and distributed to their corresponding text areas in the 
output panel at the bottom of the main window. 
 



When a list of steps are generated, they are also sent to a method that uses 
particular situations to parse this data into more of a narrative-like format. This story 
is then displayed in the final output window called ‘Narrative’. Once completed, any 
number of changes can be made to that story and re-generated to view different 
results. 

 
Story Domain and Problem 
The application has the ability to add and modify character actions from the actions 
section. This set of actions are used to make up the story Domain once the story is 
generated. The story domain used for illustration purposes in this document and 
during testing is based on the version created and used in interactive storytelling 
testing by Leandro Motta Barros and Soraia Raupp Musse from the University of the 
Sinos Valley (Barros & Musse, 2007). Small alterations were made to have it parse 
successfully with the FF Planner (Joerg) and this application. 
 
The domain file is designed with specific objects, including all of the story elements 
available in the ANG interface to create a story. It also includes a set of default 
actions, including ‘GoTo’, ‘Take’, ‘TalkAbout’, ‘ImitateDinosaur’, 
‘ExaminePlace’, ‘ExamineThing’, ‘GivePresent’, and ‘AssumeTheft’. Each 
action can involve different object types, and can have modified preconditions and 
effects based on the way the user sets up the actions in the application. 
 
For example, when using ‘GoTo’, a character will move from their current location to 
another location. ‘Take’ involves a character taking an item from a place or a 
character. ‘TalkAbout’ involves two characters talking about a particular piece of 
information in order to learn another piece of information. ‘ImitateDinosaur’ is 
used when a character must take an object from another, but the owner of the object 
does not want to give it up. The other character imitates a dinosaur to scare them 
into giving it to them, resulting in that character no longer being friendly towards 
them. ‘ExaminePlace’ is used for a character to look for items at the particular 
location. ‘ExamineThing’ is used to gain a particular piece of information from an 
object. ‘GivePresent’ is used for one character to give a gift to another. If the other 
character likes the particular object given then that character becomes friendly 
towards the other. Finally, ‘AssumeTheft’ is used to put an item at a particular 
location. 
 
This application may be used to create a story of any type with any objects provided 
by the user, since all actions and story elements may interact with each other in the 
way that the user chooses. Currently, ANG does not support the addition of new 
actions. 
 
The story problem used for this story domain consists of the declared objects, and 
the initial states of those objects. At the end contains the goals for the story, which 
result in the planner attempting to achieve those goals to provide a sequence of 
events for that story. Changing the types of goals will modify the outcome of every 
story in an attempt to achieve all of these goals. 
 



Maintenance 
Work in Progress 
In the interest of time, the ability to save created stories to a file that can later be 
retrieved to avoid having to re-create stories was omitted. As this is a prototype to 
prove a particular concept, this function was considered less important than getting 
core functionalities working correctly. This could be done by creating a simple file 
when saving a story that contains lines of Strings including all of a story’s 
information. A heading for each set of lines, such as Character or Place, would be 
useful in ensuring the information is structured in an organised way for easy retrieval. 
These files could then be retrieved at launch and their stories re-created accordingly. 
 
Future Enhancements 
This application is designed only to create a story’s fabula, or sequence of events 
that take place. It cannot create dialog between characters. Future enhancements 
could use AI learning techniques to determine how a particular character might 
speak to another, or go into more depth about what action they may decide to take. 
This would require substantially more research for a working solution. 
 
With further enhancements, the ability to attach the outputted narrative to a shell 
capable of reading it out loud with natural language processing could also be 
developed to provide further functionality for demonstration purposes.  
 

Evaluation 
Product 
This entire project has an ultimate goal of allowing the ability to generate dialogue 
between characters with predefined attributes. After extensive research into this 
particular area of artificial intelligence, and into the structure of story-telling in 
general, it was decided that before this type of dialogue can be created, the story’s 
most basic level, the fabula, must be constructed. This consists of low level actions 
and events that happen within a story. In that regard, the developed ANG prototype 
successfully achieves this goal, and allows anyone with no programming experience 
to use an interface to develop and generate these stories on his or her own. 
 
The product includes certain predefined actions that may exist in any story, such as 
characters moving from one place to another, or taking objects from certain places. 
Additional actions, such as speaking to one another and examining objects and 
places can potentially include many different effects on characters and objects. By 
including the ability to manipulate these effects in the more complex story actions, 
there is virtually no limit to the complexity of the objects being created by the user to 
determine a full story. 
 
While there are many way to improve the overall rigidity of the application, such as 
additional error handling and a more fluid narrative output, the product is a prototype 
that successfully delivers on its required specifications and ability to prove a concept. 
 

Conclusion 
Artificial Intelligence is rapidly shaping the future of many important aspects of 
everyday life. One particular area with growing interest in future advancements is 



entertainment, including television, film, gaming and general interactive and non-
interactive means of story-telling. 
 
Directors, producers, designers and developers are often looking for new techniques 
for engaging audiences into the world that they have created. A sense of immersion 
is key, and even with the best visual effects can be lost without interesting and 
unpredictable stories and characters within them. 
 
The focus of this research and project is to analyse the feasibility of automating the 
most fundamental and lowest level component of a story; the fabula, which is 
comprised of a sequence of events that occur within a story. Through research it has 
been determined that in order to consider building an application complex enough to 
develop dialog between characters with predefined attributes regarding their 
personality, a story fabula must first be created. As these events are effect simple 
steps taken to achieve an ending, artificial intelligence planning has proven to be an 
effective way of providing results. 
 
Automated story-telling through the use of artificial intelligence planning has proven 
to be an effective means of creating stories with varying results based on the 
intended goals. By altering these goals with new additions, the story results can 
change depending on those goals, and the type of search algorithms used within the 
planner. 
 
The story example and its variations that can be developed using this product are 
very simple as a result of them being based on only the story’s sequence of events. 
At present, this would be most useful as a teaching tool, allowing younger audiences 
to develop their own stories using characters. This would be useful for the 
development of their creativity and reading skills, and provide a more interactive and 
enjoyable way of learning these skills.  
 
Future development into this idea has massive implications on what will be possible 
in the near-future. With these techniques, various aspects of scripts can already be 
pre-written, and computer-controlled characters in games can give the illusion of free 
will based on the way a user interacts with them. The limits of the human imagination 
are already being challenged with modern advancements into researching these 
topics, including going as far as scientists theorising that everyday life could possibly 
be nothing more than a simulation (Kinder, 2013). It is an exciting, if not somewhat 
terrifying thought when considering what may be possible within this lifetime. 
 

References 
Barber, H. (2008, October). Generator of Adaptive Dilemma-based Interactive 
Narratives. York: Department of Computer Science, The University of York. 

Barros, M., & Musse, S. R. (2007). Planning Algorithms for Interactive Storytelling. 
Universidade do Vale do Rio dos Sinos, Brazil. ACM Compt. Entertaint. 

Beaudouin-Lafon, M. (n.d.). Prototyping Tools and Techniques. Retrieved from 
Laboratoire De Recherche En Informatique (Laboratory for Computer Science): 
https://www.lri.fr/~mackay/pdffiles/Prototype.chapter.pdf  



Boutilier, C. (n.d.). Stanford. Retrieved from Stanford University: 
http://www.stanford.edu/group/nasslli/courses/boutilier/Lecture1.pdf  

Cheong, Y.-G., & Young, M. (n.d.). Narrative Generation for Suspense: Modeling 
and Evaluation. North Carolina. 

Gratch, J. (2014). USC ICT: Gratch. Retrieved from USC Institue for Creative 
Technologies: http://people.ict.usc.edu/~gratch/    

IVE Lab. (2011). Intelligent Virtual Environments. Retrieved from IVE Teeside 
University: https://ive.scm.tees.ac.uk/  

Joerg. (n.d.). Fast-Forward. 

Kinder, L. (2013, November 20). Do we live in the Matrix? Scientists believe they 
may have answered the question. Retrieved from The Telegraph: 
http://www.telegraph.co.uk/science/science-news/10451983/Do-we-live-in-the-
Matrix-Scientists-believe-they-may-have-answered-the-question.html   

Liquid Narrative Group. (2014). Liquid Narrative Group: Projects. Retrieved from 
Liquid Narrative Group: 
http://liquidnarrative.csc.ncsu.edu/index.php/research/projects/projects-by-topic  

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., . . . 
Wilkins, D. (1998). PDDL - The Planning Domain Definition Language. New Haven, 
CT: Yale Center for Computational Vision and Control. 

Riedl, M., & Young, M. (2003). Character-Focused Narrative Generation for 
Execution in Virtual Worlds. Toulouse: ICVS 2003. 

Turner, B. (n.d.). 10 Ways Artificial Intelligence Will Affect Our Lives. Retrieved from 
Discovery: http://www.discovery.com/tv-shows/curiosity/topics/ways-artificial-
intelligence-will-affect-our-lives.htm  

 
  



Appendices 
The files shown in this section represent stories generated using the story domain 
used for testing by Leandro Motta Barros and Soraia Raupp Musse from the 
University of the Sinos Valley (Barros & Musse, 2007). These versions are modified 
to work correctly with ANG and with the planner used during testing and for 
illustration purposes. 

Sample Full Story Domain (after story generation) 
Modified Version (Barros & Musse, 2007) 

(define (domain ughs-story) 
(:requirements :strips :typing :equality :conditional-effects 
        :existential-preconditions :negative-preconditions) 
 (:types place information movable-stuff - object thing character - 
movable-stuff) 
 (:predicates (at ?what - movable-stuff ?where - place) 
        (has ?who - character ?what - thing) 
        (is-protagonist ?who - character) 
        (knows ?who - character ?what - information) 
        (likes ?who - character ?what - thing) 
        (friendly-to ?the-who ?the-friend - character) 
        (wont-give ?who - character ?what - thing) 
        (everybody-knows ?what - information) 
        (is-the-thief ?who - character)) 
 (:action GoTo 
      :parameters (?who - character ?from ?to - place) 
      :precondition (and (at ?who ?from) 
               (not (= ?from ?to))) 
      :effect (and (at ?who ?to) 
            (not (at ?who ?from)))) 
 (:action Take 
      :parameters (?who - character ?what - thing ?where - place) 
      :precondition (and (at ?who ?where) 
               (at ?what ?where)) 
      :effect (and (not (at ?what ?where)) 
            (has ?who ?what))) 
 (:action GivePresent 
     :parameters (?giver ?receiver - character ?present - thing) 
     :precondition (and (not (wont-give ?giver ?present)) 
              (not (= ?giver ?receiver)) 
              (has ?giver ?present) 
              (exists (?p - place) 
                  (and (at ?giver ?p) 
                     (at ?receiver ?p)))) 
     :effect (and (not (has ?giver ?present)) 
           (has ?receiver ?present) 
           (when (likes ?receiver ?present) 
              (friendly-to ?receiver ?giver)))) 
 (:action AssumeTheft 
     :parameters (?thief - character ?location - place ?stolen-thing - 
thing) 
     :precondition (and (at ?thief ?location) 
          (is-the-thief ?thief) 
          (has ?thief ?stolen-thing)) 
     :effect (at ?stolen-thing ?location)) 



 
  (:action ExamineThing 
      :parameters (?examiner - character ?what - thing) 
      :precondition (has ?examiner ?what) 
:effect (and (when (= ?what tughs-ticket) 
(knows ?examiner tugh-sold-his-mother)) 
(when (= ?what zonks-card) 
(knows ?examiner zonk-is-iconoclast)) 
(when (= ?what club) 
(knows ?examiner club-has-paint-marks)) 
)) 
  (:action ExaminePlace 
      :parameters (?examiner - character ?where - place) 
      :precondition (and (at ?examiner ?where) 
(not (exists (?c - character) 
(and (not (= ?c ?examiner)) 
(at ?c ?where))))) 
:effect (and (when (= ?where tughs-cave) 
(has ?examiner tughs-ticket)) 
(when (= ?where zonks-cave) 
(knows ?examiner zonks-cave-has-wet-paint)) 
)) 
  (:action TalkAbout 
      :parameters (?speaker ?listener - character ?topic - information) 
      :precondition (and (friendly-to ?listener ?speaker) 
(not (= ?speaker ?listener)) 
(knows ?speaker ?topic) 
(exists (?p - place) 
(and (at ?speaker ?p) 
(at ?listener ?p)))):effect (and (knows ?listener ?topic) 
(when (and (= ?listener zonk) 
(= ?topic zonks-cave-has-wet-paint)) 
(knows ?speaker tugh-painted-zonks-cave)) 
(when (and (= ?listener tugh) 
(= ?topic zonks-cave-has-wet-paint)) 
(knows ?speaker tugh-painted-zonks-cave)) 
)) 
  (:action ImitateDinosaur 
      :parameters (?imitator ?spectator - character ?where - place) 
      :precondition (and (at ?imitator ?where) 
(at ?spectator ?where) 
(not (= ?imitator ?spectator))) 
:effect (and (not (friendly-to ?spectator ?imitator)) 
(when (has ?spectator zonks-card) 
(and (not (has ?spectator zonks-card)) 
 
(at zonks-card ?where)))))) 
 

Sample Story Problem (after story generation) 
Modified Version (Barros & Musse, 2007) 

 (define (problem ughs-story-act1) 
  (:domain ughs-story) 
  (:objects 
   ugh - character 
   tugh - character 



   zonk - character 
   ughs-cave - place 
   tughs-cave - place 
   zonks-cave - place 
   altar - place 
   beach - place 
   garden - place 
   tughs-ticket - thing 
   zonks-card - thing 
   statue - thing 
   club - thing 
   fish - thing 
   strawberry - thing 
   statue-was-stolen - information 
   tugh-sold-his-mother - information 
   zonks-cave-has-wet-paint - information 
   zonk-is-iconoclast - information 
   club-has-paint-marks - information 
   tugh-painted-zonks-cave - information 
   ) 
  (:init 
   (is-protagonist ugh) 
   (at ugh ughs-cave) 
   (at tugh tughs-cave) 
   (at zonk zonks-cave) 
   (at club altar) 
   (at fish beach) 
   (at strawberry garden) 
   (has tugh statue) 
   (has zonk zonks-card) 
   (knows ugh statue-was-stolen) 
   (likes zonk strawberry) 
   (friendly-to tugh ugh) 
   (friendly-to zonk ugh) 
   (wont-give tugh tughs-ticket) 
   (wont-give tugh statue) 
   (wont-give zonk zonks-card) 
   (is-the-thief ugh)) 
  (:goal (and (knows ugh tugh-sold-his-mother) 
      (knows ugh zonk-is-iconoclast) 
      (at tughs-ticket ughs-cave) 
))) 


