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Abstract 
 
Background: The genetic control of tumour progression presents the opportunity for 
bioinformatics and gene expression data to be used as a basis for tumour grading. 
The development of a genetic signature based on microarray data allows for the 
development of personalised chemotherapeutic regimes.  
Method: ONCOMINE was utilised to create a genetic signature for ovarian serous 
adenocarcinoma and to compare the expression of genes between normal ovarian 
and cancerous cells. Ingenuity Pathways Analysis was also utilised to develop 
molecular pathways and observe interactions with exogenous molecules.  
Results: The gene signature demonstrated 98.6% predictive capability for the 
differentiation between borderline ovarian serous neoplasm and ovarian serous 
adenocarcinoma. The data demonstrated that many genes were related to 
angiogenesis. Thymidylate synthase, GLUT-3 and HSP90AA1 were related to 
tanespimycin sensitivity (p=0.005).  
Conclusions: Genetic profiling with the gene signature demonstrated potential for 
clinical use. The use of tanespimycin alongside overexpression of thymidylate 
synthase, GLUT-3 and HSP90AA1 is a novel consideration for ovarian cancer 
treatment.  
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Introduction 
Key Features of Cancer 
Traditional theory states that cancer is a simple disease involving down-regulated 
control over cell proliferation. However, research now suggests that the molecular 
pathology of cancer is highly complex and cells acquire a plethora of traits that 
permit tumourgenesis and malignant transformation (Hanahan, & Weinberg, 2000). 
Whilst all cancers display a number of differences, there are some common themes 
that have been identified (Figure 1), with key features involving the evasion of 
apoptosis and angiogenesis (Hanahan & Weinberg, 2000).  
 

 

Figure 1. Acquired Capabilities of Cancer. (Reprinted from Hanahan, D. & Weinberg, R. (2000) The 
Hallmarks of Cancer Cell Vol. 100 pp. 57-70, with permission from Elsevier). 

 

Genetic basis of cancer 
The cell cycle is a key aspect to consider in oncogenesis; the stages of the cell cycle 
are tightly regulated by the expression of a series of proteins, with mechanisms 
existing to prevent tumourgenesis and promote apoptosis (apoptosis is the term 
used to describe programmed cell death) in cells which are damaged (Shah, M & 
Schwartz, G. 2001). Cell proliferation is regulated by genes. Tumour suppressor 
genes, such as p53 (Levineet al 1991), inhibit the growth and division of cells, whilst 
proto-oncogenes, such as RAS (Furth et al  1987), stimulate cell proliferation and 
accelerate growth (Chial , 2008). This equilibrium between tumour suppressor genes 
and proto-oncogenes, in healthy tissues, maintains a balance of cell growth and 
apoptosis through cell cycling processes (Chial, 2008). Proto-oncogene mutation can 



lead to the formation of oncogenes and ultimately increases the probability of 
tumourgenesis, especially since those involving the amplification of gene frequency, 
such as that caused by mutations or polymorphisms in the promoter regions of 
genes (Biondi et al  2000), can increase the expression of proteins involved in 
malignant progression (Chow, 2010). This is exemplified by a polymorphism in the 
promoter region of the PR gene, which increases its transcription and thus 
production of the hPR-B protein in endometrial cancer (De Vivo et al  2002). 
 

 
Figure 2. Mechanisms Involved in Apoptosis Cascade and Cancer Initiation (Wong, R (2011) 
Apoptosis in Cancer: From Pathogenesis to Treatment Journal of Experimental Cancer and Clinical 
Cancer Research Vol. 30 pp.87. doi:10.1186/1756-9966-30-87. This image is © 2011Rebecca SY 
Wong, used under a Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited). 

 

 
Mutations in genes can be either inherited or acquired, with inherited mutations 
substantially increasing the risk of developing a cancer if a first degree relative has 
been diagnosed with it; this is commonly seen in patients who have inherited 
mutations of the MET gene which can cause hereditary papillary renal cancer 
(Linehan et al  2010). As previously mentioned, acquisition of mutations in the 
promoter regions of the tumour suppressor genes can alter their expression (Vooght, 
K. et al 2009) and ultimately down-regulate the control of proliferation and cell death 
(Chial, 2008). The different types of mutation ultimately will impact on the outcome, 



with point mutations, insertions and deletions being common types of mutation that 
can have very dissimilar effects on the cell (Loewe, 2008).  
 
Apoptosis is initiated by numerous factors (Figure 2). However, the caspase 
enzymes have demonstrated huge significance in the progression of cell death, by 
cleaving vital cellular proteins and activating DNAase for the degradation of DNA 
(Lavrik et al 2005). Genetic expression of caspases has been reported as reduced in 
many cancers, thus reducing the apoptotic ability of cancerous cells (Philchenkov et 
al 2004). Cells which have acquired the ability to evade apoptosis can be 
immortalised and replicate uncontrollably, leading to tumour formation (Lowe & Linn, 
1999).  
 
Tumour Growth & Hypoxia 
Tumour growth often leads to hypoxia, whereby the oxygen demand 
outweighs the diffusion of oxygen from the local vasculature (Dachs & Tozer, 2000). 
Hypoxia has the ability to augment or diminish gene expression to facilitate 
continued tumour growth in an environment which is oxygen deprived. This is 
achieved by stimulating angiogenesis, mediated by the increased expression of 
angiogenic factors, such as hypoxia-inducible factor (HIF). This allows a greater 
permeation of oxygen to tumour tissue by increasing HIF-1α gene expression (which 
encodes for a regulatory subunit of HIF) through its subsequent impact on signalling 
cascades and increase in the density of glucose transporters to enhance glucose 
uptake for glycolysis (Dachs & Tozer, 2000). Angiogenesis involves the novel 
formation of a new vasculatory network and is an essential process in the 
development of cancer as tumours utilise this mechanism to obtain oxygenation and 
nutrients to meet the needs of the growing neoplasm (Nishida, N. et al 2006). The 
angiogenesis cascade is essential and involves key molecules in the progression of 
cancer (Figure 3). Heat-shock protein 90 (HSP90) is described as a molecular 
chaperone heavily involved in the regulation of HIF and ultimately impacts 
significantly on angiogenesis (Bohonowych et al 2010). Apoptosis and angiogenesis 
in healthy cells are under genetic control, whilst in cancerous cells, mutations in 
these regulatory genes can lead to out of control cell proliferation and tumour growth 
through changes in expression levels (Hanahan  & Weinberg,  2000).  
 

 



 

Figure 3. Angiogenic Signalling in Cancer. (Bohonowych, J.E. Gopal, U. & Isaacs, J.S (2010) Hsp90 
as a Gatekeeper of Tumor Angiogenesis: Clinical Promise and Potential Pitfalls Journal of Oncology 
Vol. 2010, Article ID 412985, doi:10.1155/2010/412985. This image is © 2010 J. E. Bohonowych et 
al., used under a Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited). 

 

 
Metastasis in cancer has been researched extensively and encompasses a multi-
step process (Nakayama et al 2012) involving: the disconnection of adhesions and 
single-cell separation from tumour masses (Cook  et al 2011), tumour intravasation 
into blood and lymphatic systems (Thiolloy & Rinker-Schaeffer, 2011) and 
subsequent extravasation (Hata  et al 2007), evasion of the host immune system in 
circulation (Youn  et al 2008) and, as mentioned, angiogenesis (Houle et al 2002). 
Two models exist for cancer metastasis with the first considering ‘early 
dissemination’ as a method of metastasis which occurs in precancerous 
lesions, prior to malignant development, and the second describing ‘late 
dissemination’ which involves metastasis from primary tumours (Klein  2008). Once 
disseminated, cells are carried in the blood and lymphatic systems to sites distant 
from the primary tumour and begin to grow as a secondary mass (Liotta 2001). 
These models suggest that early disseminated metastases are genetically diverse 
from the primary tumour, whilst those that are a product of late dissemination 
demonstrate a genetically similar profile; early disseminated metastases may 
therefore behave differently to the primary tumour and could consequently 
demonstrate a distinct difference in chemoresponse (Klein, 2008).  



Chemoresponse 
 
Chemotherapy 
Chemotherapy drugs have been in the clinic for in excess of 50 years, with efforts 
continuing to develop medicines which target neoplastic cells and subsequently 
display cytostatic or cytotoxic effects (Johnstone, R. et al 2002). Anti-cancer drugs 
have structural differences and varying specificity. However, all drugs aim to induce 
cellular changes to precipitate initiation of apoptosis (Johnstone, R. et al 2002). To 
further understand the effects of anticancer drugs, tumour response and 
chemosensitivity, their mechanisms must be understood in more detail.  
 
Classical Anticancer Agents 
Anticancer drugs can be grouped into three main categories: classical 
chemotherapy, hormonal and immunotherapy. Chemotherapy can be further 
subdivided into: alkylating agents, antimetabolites, cytotoxic antibiotics, 
topoisomerase inhibitors and anti-microtubule agents (Espinosa et al 2003). 
Classification of anti-cancer drugs according to their basic mechanism is particularly 
important as it allows for a comprehensive overview of drug availability, considers 
the potential for toxicity in multi-drug regimens (Espinosa et al 2003) and permits a 
brief look at the potential for chemoresponse on an individual patient basis. 
 
The capacity of tumour cells to undergo cell division and rapid growth is derived from 
their ability to undergo DNA replication at a rapid rate; alkylating agents use this 
ability as their primary target to demonstrate cytotoxic and cytostatic effects 
(Valeriote & van Putten, 1975). Alkylating agents is a broad category which includes 
platinum-based drugs and describes a general mechanism whereby all alkylating 
agents form covalent links with nucleophilic-centered macromolecules, such as DNA, 
to form ‘cross-links’ and thus inhibit DNA replication and subsequent RNA production 
and protein synthesis (Siddik, 2002).  
 
Antimetabolites are drugs which intervene in the metabolism within a cell and include 
dihydrofolate reductase inhibitors and thymidylate synthase inhibitors (Kaye, 1998). 
Folate is a key component in purine and pyrimidine synthesis, which form the basic 
units of DNA (Choi Mason, 2000), with dihydrofolate reductase catalysing 
dihydrofolate reduction to tetrahydrofolate; methotrexate is an example of a 
dihydrofolate reductase inhibitor (Schweitzer et al 1990). Thymidylate synthase 
catalyses the production of thymidine phosphate from dUMP; inhibitors of this 
enzyme, such as 5-fluorouracil, can therefore inhibit the production of thymidine 
phosphate which is essential for DNA synthesis and repair (Touroutoglou & Pazdur, 
1995). 
 
Cytotoxic antibiotics, or ‘antitumour antibiotics’, are derived naturally from 
microorganisms and generally exert their action directly on DNA, although the 
precise mechanism is drug dependent (Missailidis, 2008). Anthracyclines, such as 
daunorubicin and doxorubicin, are thought to exert their action through a 
combination of DNA intercalation (and subsequent inhibition of DNA synthesis) and 
free radical formation leading to damage of existing DNA (Minotti et al 2004). 
Dactinomycin (actinomycin D) is a chromomycin and an additional example of a 
cytotoxic antibiotic which binds directly to DNA, inhibiting RNA synthesis through 
interference with RNA elongation (Sobell, 1985). Bleomycin, a further example of an 



antitumour antibiotic, binds to and degrades DNA, although it requires oxygen for 
activation (Stubbe & Kozarich, 1987). Mitomycin C is another example of a naturally 
occurring chemotherapeutic agent; it forms covalent cross-linkages between DNA 
strands that are complementary and subsequently inhibits replication (Tomasz et al 
1987). 
 
Topoisomerase inhibitors are another class of chemotherapeutic agents and are 
divided into two groups, those that inhibit topoisomerase I enzyme (which is involved 
in the initiation of the cleavage of one strand of DNA) and those that inhibit 
topoisomerase II enzyme (which initiates cleavage of both strands) (Hande, 2006). 
Through inhibition of the topoisomerase enzyme, these chemotherapeutic drugs can 
inhibit DNA replication and subsequently promote cell apoptosis (Eweseudo & 
Ratain, 1997). Topoisomerase I inhibitors, such as irinotecan, are derivatives of the 
phytochemical camptothecin (Eweseudo & Ratain, 1997), whilst topoisomerase II 
inhibitors include etoposide, which can prevent re-ligation of cleaved DNA (Hande, 
2006).  
 
Microtubules are an essential part of the eukaryotic cell; they are required for 
intracellular transport, cellular movement and division of the cell and are composed 
of tubulin heterodimers (Checci et al 2003). Neoplastic cells undergo mitosis more 
rapidly than normal cells, thus providing a target for drugs which interact with 
microtubules and block progression of the cell cycle, allowing for the initiation of 
apoptotic cascades (Checci et al 2003). Anti-microtubule chemotherapeutic agents 
include the vinca alkaloids and the taxanes (Checci et al 2003), with the taxanes, 
such as paclitaxel, inhibiting cell proliferation through stabilisation of microtubules 
and subsequent mitotic inhibition (Rowinsky 1997). The vinca alkaloids, such as 
vincristine and vinblastine, initiate depolymerisation of microtubules through the 
binding of β-tubulin and similarly, can inhibit continuation of mitosis (Checci et al 
2003). 
 
Targeted Anticancer Agents 
Targeted anticancer agents and ‘targeted therapy’ are terms used to describe anti-
neoplastic drugs which are designed by intention to interfere with a specific target 
molecule which has been identified as possessing a key role in tumour development 
and progression (Sawyers, 2004). The limitations of the classical anticancer agents, 
including poor specificity and subsequent toxicity, high dose requirement and multi-
drug resistance, can be overcome through the use of targeted anticancer agents and 
has led to the development of relatively novel compounds based on known targets 
(Chari, 2007). 
 
Anti-oestrogens are an additional class of targeted-anticancer therapy and include 
the pro-drug tamoxifen (Colleta et al 1994). They antagonise the effect of oestrogens 
through competitive inhibition of the oestrogen receptor (Neven & Vergote, 2001), 
thus demonstrating usefulness in the pathogenesis of several cancers, such as 
breast, which have been linked to oestrogen exposure (Yager & Liehr, 1996). 
 
Monoclonal antibodies, such as rituximab and trastuzumab, have also been 
developed as targeted anticancer agents as they are developed to possess a high 
specificity in the targeting of tumour antigens (Chari, 2007). To enhance their anti-
tumour activity, these antibodies can also be conjugated with cytotoxic drugs or with 



radioactive isotopes (Chari, 2007), as seen with doxorubicin and monoclonal 
antibody IgG2a (Yang & Reisfeld, 1988). The specificity of targeted anticancer 
agents highlights the importance of identifying targets for individual cancers and 
promotes development of novel agents based on these targets.  
 
Factors Affecting Chemoresponse 
Response to chemotherapy is measured in terms of patient survival, tumour size 
reduction and changes in metabolic activity (Weber, 2005). Chemosensitivity and 
chemoresistance are terms used to determine the level of response of a particular 
cancer to specific chemotherapy regimens however, cancer requires a more 
individualised marker for defining the measurement of response (Toole et al 2007). 
Chemoresponse can be analysed by tumour microenvironment and tumour cell 
characteristics which includes gene expression levels, presence of membrane 
transporters and genetic polymorphisms (Longley & Johnston, 2005). Gene 
expression signatures are a relatively novel method in the field of oncology and 
serve the purpose of identifyingy novel drug targets, provide prognostic information 
and predict chemoresponse in individual patients (Rathnagiriswaran et al 2010). This 
allows for a personalised approach to the design of chemotherapeutic regimens to 
improve patient response and clinical outcome.  
 
Chemosensitivity and Chemoresistance 
Drug resistance of cancer cells has been identified as the primary factor in failure of 
chemotherapy regimens to treat tumours (Gatti & Zunino, 2005); and thus forms the 
basis of an argument for the design of personalised chemotherapy regimens. The 
failure of chemotherapeutic treatment can arise from either intrinsic or acquired drug 
resistance (Ozben, 2006), with intrinsic resistance existing prior to treatment and 
acquired resistance occurring during or in response to treatment (Wilson, et al 2006). 
Chemoresistance in tumours can be exhibited for one class of drug or can extend to 
many different classes, termed ‘multi-drug resistance’ (Baguley, 2010). Drug 
resistance is particularly complex, since there are numerous factors which can 
contribute to the ability of a tumour to evade treatment (Wilson et al 2006); 
alterations to prevent drug accumulation inside the cell (Gottesman, 2002), changes 
to drug targets (Hayes & Wolf, 1990) and factors which impact on cellular response, 
such as DNA mismatch-repair (Baguley, 2010) are all mechanisms of 
chemoresistance. Tumour hypoxia can also impact on drug delivery to cells 
(Baguley, 2010), with the tumour vasculatory system requiring the hypoxic ‘switch’ 
for angiogenesis (Laderoute  et al 2000), and the resulting supply of blood to the 
tumour impacting on drug access, since blood flow can often be intermittent 
(Baguley, 2010).  
 
Tumour cells utilise drug transporters as a method of drug accumulation evasion, 
with overexpression of ABC transporters having been demonstrated to contribute to 
multidrug resistance, and their efficacy is owed to their ability to increase drug efflux, 
thereby reducing intracellular concentration of cytotoxic agents (Ozben, 2006). Drug 
families most associated with this type of multidrug resistance include the taxanes, 
vinca alkaloids and antimetabolites (Ozben, 2006). P-glycoprotein is an example of 
an ABC multi-drug transporter which is well established as a mediator of resistance 
to a number of drug classes (Stavrovskaya, 2000). The effect of gene expression on 
drug resistance is exemplified by the multidrug resistance gene, which encodes for 
the P-glycoprotein transporter, with overexpression of the mdr1 isoform of the gene 



correlating to multidrug resistance in specific solid tumour masses (Nooter & 
Herweijer, 1991).  
 
Alteration of a drug target can occur through loss of a cell surface receptor or simple 
mutation of the receptor or target gene (Gottesman, 2002). Many drugs have a 
specific target protein, such as an enzyme, upon which their mechanism of cell 
destruction depends; the efficacy of these drugs can be vastly reduced when the 
levels of expression of these targets are elevated or decreased (Stavrovskaya, 
2000). Neoplastic cells which display resistance to topoisomerase inhibitors, for 
example, tend to have a lower quantity of topoisomerase enzyme which permits 
evasion of cytotoxicity (Stavrovskaya, 2000). Furthermore, once cells that are 
susceptible to chemotherapy have been damaged by cytotoxic agents, mutations in 
the genes or proteins (e.g tumour suppressor gene p53) involved in the apoptotic 
cascade can also aid in a cell’s ability to resist programmed cell death 
(Stavrovskaya, 2000). 
 
Neoplastic cells have the additional ability to develop resistance to drugs which 
target specific stages in the cell cycle in the attempt to induce apoptosis; cells which 
are not undergoing the targeted cell cycle stage, such as those at the hypoxic centre 
of a dense solid tumour, may therefore be insensitive to the action of the 
chemotherapeutic agent (Shah  & Schwartz, 2001). The use of combination 
chemotherapy in particular can propagate this type of resistance, with one agent 
impacting on the cell cycle to such an extent as to render another agent ineffective, 
such as that seen with flavopiridol and paclitaxel (Shah  & Schwartz, 2001).  
 
Current Chemotherapy Guidance 
Clinical treatment of cancer is predetermined by guidance given to the National 
Health Service and outlines where surgery and drug treatment is appropriate, often 
without considering many individual characteristics of patients and their disease. 
Characteristics vary within and between cancer types, however, the resource 
provision for its treatment originates from the National Institute for Health and Care 
Excellence (NICE), with little consideration for the influence of a patient’s genetics on 
prognosis and chemoresponse. However, NICE have recently developed guidelines 
considering genetic predisposition to breast cancer, utilising the presence of BRCA1, 
BRCA2 and/or TP53 mutations as markers of risk for breast cancers, allowing for 
guidance on chemoprevention (NICE, 2013). Additionally, genetic testing has been 
used to identify HER2 positive and negative patients in metastatic gastric (NICE, 
2010) and breast cancer. This forms the basis for the choice of specific 
chemotherapy regimes, particularly where the monoclonal antibody trastuzumab is 
concerned, since this targets HER2 when overexpressed and should not otherwise 
be used in patients who prove negative, due to risk of cardiotoxicity (NICE, 2006). 
The involvement of genetic testing in the clinic has enormous potential for 
development; personalised medicines would allow for the tailoring of a drug regimen 
to suit an individual patient, regardless of guidelines, and should combine tumour 
characteristics, genetic influence and drug sensitivity to optimise chemotherapy 
outcomes (Jain, 2005).   
 
Biomarkers 
Since the discovery that the basic origins of cancer involve genetic alterations in the 
cell (Bunz, 2008) and that genomic biomarkers can be utilised to indicate disease 



state and progression (Strimbu  & Tavel, 2010), oncogenomic data has been used to 
accelerate the scientific understanding behind cancer to rationally develop better 
treatment choices and regimes (Strausberg et al 2004). Biomarkers have been 
identified as predictors of tumour chemosensitivity (Lee et al 2007) and can therefore 
be a key aspect in the development of personalised medicines for cancer patients 
(La Thangue & Kerr, 2011). Biomarkers fall into two primary categories: predictive 
and prognostic, with predictive providing information on the cancer which is 
independent of drug therapy and prognostic providing information on the likelihood of 
response to targeted therapies (Alymani  et al 2010).  
 
There are some notable examples of when biomarkers have successfully predicted 
therapeutic outcome and have been extrapolated into the clinical setting: the human 
epidermal growth factor receptor 2 (HER2) now provides a target for trastuzumab; it 
was discovered to be over-expressed in a quarter of patients with breast cancer who 
now benefit from more personalised treatment (Alymani  et al 2010). Additionally, K-
ras is a small G-protein and is significantly involved in signal transduction of the 
epidermal growth factor receptor (EGFR) and it has been demonstrated that anti-
EGFR drugs (Saltz  et al 2006), such as panitumumab and cetuximab are ineffective, 
when K-ras mutations isolate the pathway from providing a target (Alymani  et al 
2010). Identification of the K-ras mutation can therefore be utilised to identify patients 
who will not benefit from EGFR inhibitors and may require alternative treatment, as 
seen in NICE guidance for the treatment of metastatic colorectal cancer (NICE, 
2013). 
 
Patients who have cancer which demonstrates a high level of resistance to 
chemotherapy when given in accordance with guidelines may benefit from gene 
profiling to identify which therapies the cancer demonstrates chemosensitivity. 
Research exists which encompasses the analysis of RNA expression data in breast 
cancer generated from array technology and demonstrates a high level of accuracy 
for predicting chemosensitivity to docetaxel (Chang et al 2003). This highlights the 
potential for extrapolation of this technique into the clinical setting for the gene 
profiling of all patients to identify optimum therapy. As a consequence of this 
understanding, oncogenomics can use bioinformatics and microarray technology as 
a platform for processing of data and for its analysis (Rhodes, 2004). 
 
Bioinformatics & Microarray Technology 
Bioinformatics is a recently established, multifaceted field of science encompassing 
molecular biology, information technology and statistical analysis (Yi, 2013). It 
provides scientists with the tools to mine vast databanks for information and 
integrate it into programmes of research (Barts Cancer Institute, 2013). Since the 
introduction of microarray technology in 1995 (Schena, et al 1995), it has become a 
major factor in genomic research (Manning et al 2006) and science has seen a 
notable increase in the number of published papers considering predictive 
biomarkers (Fig. 4) (Alymani  et al 2010). Microarrays have the capability to measure 
the expression of over a thousand genes simultaneously (Manning, A.T et al 2006) 
which allows for the application of this technology, within the field of bioinformatics, 
to research into personalised medicines for cancer patients. The data generated 
from microarrays has been successfully implemented in the identification of 
biomarkers for the targeting of drugs (Kozian & Kirschbaum, 1999) and has recently 
been analysed for the generation of gene expression signatures in the classification 

 



of breast cancer subtypes (West et al 2001). This has allowed for a more accurate 
prediction of prognosis (van’t Veer et al 2002). Online databases now exist for 
microarray data and are available for users to conduct their own research through 
data manipulation and analysis. 
 

 
Figure 4. Trends in published papers for predictive biomarkers. (Reprinted from Alymani, N. et al 
(2010) Predictive biomarkers for personalised anti-cancer drug use: Discovery to clinical 
implementation European Journal of Cancer Vol. 46 pp. 869- with permission from Elsevier) 

 
 
ONCOMINE 
ONCOMINE is a web-based database of cancer microarray technology which allows 
for gene expression profiling (Rhodes2004) and has permitted the development and 
success of numerous research activities within the field of oncology. Recent cancer 
research involving ONCOMINE has found success when observing gene expression 
comparatively between localised prostate tumour cells and metastatic tumour cells to 
further understand tumour progression (Gorlov et al 2010). The study was able to 
determine gene candidates in silico which serve as signatures for tumour 
progression and development (Gorlov et al 2010). ONCOMINE was also central to a 
meta-analysis of breast cancer data, with subsequent data mining identifying the 
NRF-1 gene as up-regulated in oestrogen receptor positive patients when compared 
to oestrogen receptor negative patients (Kunkle et al 2009). These differences were 
found to have implications on prognosis, affecting survival rates and chances of 
disease relapse (Kunkle et al 2009).  
 
 



Ingenuity Pathways Analysis 
Ingenuity Pathways Analysis (IPA) is an entirely web-based software tool which 
facilitates the identification of signalling cascades and pathways involved in 
metabolism, whilst allowing for the prediction of the effects of these pathways on 
disease manifestation and progression (USC, 2011). Effective use of ONCOMINE 
can be combined with use of IPA to generate further understanding of how gene 
expression correlates to cell processes in their entirety, allowing for detailed 
analyses of the pathways that genetic expression has the potential to impact on; this 
combination technique was employed in the isolation of ‘potential blood-based 
markers’ for a number of common human cancers and provided data which could 
support further research into biomarker validity (Yang et al 2008).  
 
Ovarian Cancer 
Ovarian cancer is the predominant cause of mortality in gynaecological 
malignancies, with the five-year survival rate remaining at just 53% (Ries, LAG. et al 
2003), which can be attributed to the majority of cases being diagnosed at an 
advanced stage (Landenet al 2008). Current NICE guidance for treatment of ovarian 
cancer recommends either a platinum-based compound (carboplatin or cisplatin) or 
a combination of cisplatin with paclitaxel as first-line therapy (NICE, 2003). However, 
current research shows that some ovarian cancers are displaying resistance to 
cisplatin-induced cytotoxicity and reduced tumour cell sensitivity (Hu  et al 2003), 
which demonstrates a possibility for the NICE recommended therapy to be largely 
ineffective. 
 
Pathogenesis 
Tumourgenesis occurs in ovarian cancer through malignant transformation of cells 
which can originate from the outer epithelial surface of the ovary, or from the 
superficial epithelial layer of the fallopian tubes (Dubeau, 2008). Ovarian tumours 
have been partitioned into two categories as part of a model to facilitate 
identification; type I tumours include serous, endometrioid, mucinous and clear-cell 
carcinomas and are often low grade, whilst type II tumours tend to be more 
aggressive and include high-grade serous carcinoma and malignant mesodermal 
tumours. The majority of ovarian tumours are type II high-grade serous carcinomas 
which spread into the abdomen and undergo distant metastasis (Kurman & Shih, 
2010).  
 



 
Figure 5. Ovarian Cancer: Proposed Signalling Pathways. (Toss, A. De Matteis, E. Rossi E. Della 
Casa, L. & Iannone, A. (2013) Ovarian Cancer: Can Proteomics Give New Insights for Therapy and 
Diagnosis? International Journal of Molecular Sciences Vol. 14 pp.8271-8290. 
doi:10.3390/ijms14048271. This image is © 2013 A Toss et al., used under a Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited). 

 
 
Ovarian cancer is a heterogeneous disease and each of the cancers within the 
classification type outlined in the model have demonstrated genetic similarity, with 
type I cancers rarely displaying mutations in the p53 gene and commonly displaying 
mutations in KRAS, BRAF and ERBB2 genes. In contrast, type II tumours have a 
high frequency of p53 gene mutations and are significantly more homogenous 
(Kurman & Shih, 2010). The introduction of protein expression analysis into ovarian 
cancer research has presented opportunities for the identification of signatures for 
the different histotypes which fall under ovarian cancer, and whilst the pathogenesis 
of the various histotypes can be deduced, knowledge is sought to determine how 
these genes impact on tumour progression and chemosensitivity (Toss et al 2013) 
with recently proposed signalling pathways being a key starting point (Fig. 5). 
 
Research suggests that long term prognosis for this cancer is significantly related 
to the degree of microvascular development within a tumour. Growth and 
capacity of ovarian carcinoma to metastasise has been demonstrated to be highly 
angiogenesis dependent (Alvarez et al 1999), with tumour hypoxia resulting in the 
secretion of proangiogenic growth factors to stimulate the development of tumour 
vasculature (Ramakrishnan  et al 2005). Angiogenesis is integral to tumour survival, 
particularly in ovarian cancer, since tumour size is often large in relation to the 
relatively small ovaries and revascularisation is key to disease progression (Hazelton 

 



et al 1999). In addition to growth enhancement, angiogenesis can also facilitate the 
circulation of tumour cells to promote metastasis (Alvarez  et al 1999).  
 

 
Figure 6. Proposed Model for Ovarian Carcinogenesis. (Landen, C., Birrer, M. & Sood, A. (2008) 
Early Events in the Pathogenesis of Epithelial Ovarian Cancer Journal of Clinical Oncology Vol. 26 
pp. 995-1005. Reprinted with permission. © (2008) American Society of Clinical Oncology.  All rights 
reserved.)  

 
Biomarkers and Signalling 
As previously identified, the genetic mechanisms behind ovarian cancer will 
determine its histotype and behaviour. There are numerous genes implicated in 
tumour pathogenesis (Fig. 6), and a variety of genes have been found to be 
implicated in the different grades of ovarian cancer (Fig. 7). In addition to the genes 
identified, there are a number of genes which have been researched more 
thoroughly and are widely accepted as biomarkers that are strongly affiliated with 
ovarian cancer pathogenesis and progression. 
 



 
Figure 7. Selection of Genes Involved in the Pathogenesis of Ovarian Cancer (Toss, A. De Matteis, E. 
Rossi E. Della Casa, L. & Iannone, A. (2013) Ovarian Cancer: Can Proteomics Give New Insights for 
Therapy and Diagnosis? International Journal of Molecular Sciences Vol. 14 pp.8271-8290. 
doi:10.3390/ijms14048271. This image is © 2013 A Toss et al., used under a Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited). 

 
 
As mentioned, the key to tumour growth in ovarian cancer is the hypoxic stimulus of 
growth factors. Hypoxia inducible factor (HIF) is a complex which is heavily involved 
in transcription and which is highly sensitive to changes to intracellular oxygen levels 
(Poon, E. Harris, A. & Ashcroft, M. 2009). The overexpression of HIF in ovarian 
cancer is correlated with a poorer prognosis and survival rate (Semenza, 2002). HIF-
1α is a ‘regulatory subunit’ of HIF and its overexpression is highly associated with 
advanced neoplasms (Poon, E. et al 2009). Hypoxia often stimulates changes in 
cellular metabolism, with the glucose transporter GLUT-1 having been identified for 
its expression levels providing a relationship with the stage of cancer; significant 
overexpression has been noted in malignant epithelial tumours when compared to 
borderline disease (Cantuaria et al 2000) which is expected, since GLUT-1 
expression is known to be controlled by HIF-1 (Behrooz & Ismail-Beigi,1997).  
 
The proangiogenic growth factor, vascular endothelial growth factor (VEGF), was 
shown to be significantly implicated in angiogenesis in both normal ovaries (to 
maintain the function of the menstrual cycle) and in neoplastic ovaries 
(Ramakrishnan et al 2005).VEGF binds to tyrosine kinase receptors, activating the 
PI3 and AKT/MAP Kinase pathways and was identified as over-expressed in ovarian 
tumour cells comparative to normal, providing adequate vascularisation for 
neoplastic survival and promoting cell immortality. VEGF expression appears also to 
provide prognostic information on disease staging (Ramakrishnan et al 2005). 
Research in non-human cell lines has also found that overexpression of VEGF in 
ovarian epithelial surface cells can undergo malignant transformation to cells which 
form ascites (Ramakrishnan et al 2005), thus highlighting the potency of VEGF as a 
prognostic biomarker for ovarian cancer. Gene polymorphisms of VEGF were also 
highlighted as potential factors in prognosis, with research leading to the 
consideration that differing combinations of genotype might affect circulating levels of 
VEGF (Hefler et al 2007).  
 
Additionally, there are numerous growth factors which can have an impact on tumour 
cell survival, namely placental growth factor (PGF) (Hu et al 2003). PGF has a role in 
the reorganisation and normalisation of tumour vessels (Hedlund et al 2012). Cellular 
enzymes have also been the subject of research in ovarian cancer: data revealed 
that the expression of the gene encoding the enzyme thymidylate synthase is 
significantly higher in epithelial ovarian cancer compared to normal ovaries (Fujiwaki 
et al 2000), which suggests a heavy involvement of thymidylate synthase in the 
pathogenesis and progression of ovarian cancer. Another enzyme, topoisomerase II, 
was subject to investigation, with the genes topoisomerase II alpha and 



topoisomerase II beta being upregulated in ovarian cancer; topoisomerase II beta 
was considered to have potential as a novel chemotherapeutic target (Withoff et al 
1999). Furthermore, the enzyme caspase 1-α has been discovered as pro-apoptotic 
in ovarian cancer cells and its down-regulation in these cells was suggested as a 
factor in the resistance of ovarian cancer cells to apoptosis (Feng et al 2005).  
 
Chemoresponse 
VEGF overexpression has additionally been found to mediate cytoprotection against 
cisplatin-induced cytotoxicity and reduce tumour cell sensitivity (Hu et al 2003). The 
demonstration of hypersensitivity to anti-VEGF drugs in placental growth factor 
expressing tumours is supported by research which shows that the inactivation of 
PGF in human tumours leads to a greater resistance to anti-VEGF drugs (Hedlund et 
al 2012). Proposed theories suggest that PGF-normalised tumour blood vessels 
could potentially augment delivery of anti-VEGF drugs to the microenvironment of 
the tumour (Hedlund et al 2012). PGF has also been shown in vitro to sensitise 
tumour cells to the anti-angiogenic effects of anti-VEGF drugs (Hedlund et al 2012). 
 
High grade ovarian neoplasms are also often known to overexpress indoleamine 2,3-
dioxygenase (Okamoto et al 2005), encoded for by the IDO-1 gene (Soliman et al 
2010), which has been linked with paclitaxel resistance and overall impaired survival 
in serous tumours (Okamoto  et al 2005). Furthermore, βIII tubulin overexpression 
has also been associated with paclitaxel resistance in ovarian cancer (Kamath et al 
2005).  
 

Method 

Owing to the increased clinical need for a chemotherapeutic regimen which is 
effective in treating ovarian cancer, the generation of a novel genomic signature for 
at least one histotype (ovarian serous adenocarcinoma) was undertaken in order to 
determine how these genes impact on disease staging and to facilitate the selection 
of a drug to which the histotype is chemosensitive.  

Highly ranked gene expression values were generated from the online database, 
ONCOMINE, for ovarian cancers. Ten genes were chosen for further analysis based 
on preliminary research and expression values were generated for both borderline 
ovarian serous cancer and ovarian serous adenocarcinoma to facilitate comparison. 
Data validation utilising another dataset was also undertaken to evaluate the 
predictive capability of the gene signature model. Additionally, data was then viewed 
for the expression values of the genes in chemoresistant and chemosensitive cell 
lines for relevant chemotherapeutic agents to demonstrate how the expression of the 
genes within the signature might impact on chemoresponse. Further analysis of the 
genomic signature was undertaken utilising IPA with the aim of identifying networks 
and pathways between genes and in order to further understand how the genomic 
signature impacts on the disease and chemosensitivity.  

 

  



Results & Data Analysis 

Initially a database search of ONCOMINE was performed which observed gene 
expression in ovarian cancer cells comparative to normal ovarian cells. Ten genes 
were selected based on preliminary research into the existence of previously 
identified relationships of the genes to ovarian cancer pathogenesis or progression. 
Fig. 8 displays a heat map for the expression of the chosen genes in the two 
conditions: normal ovary cells and ovarian serous adenocarcinoma.  

 

 
Figure. 8. Comparison of Selected Genes in Adib Ovarian Grouped by Cancer Type log2 median-
centered intensity. (Data reproduced using ONCOMINE software from an original study by Adib T, 
Henderson S, Perrett C, Hewitt D, Bourmpoulia D et al (2004) Predicting biomarkers for ovarian 
cancer using gene-expression microarrays. British Journal of Cancer Vol. 90 pp. 686-692)  

 
 
Gene expression values were then obtained for the chosen genes in an additional 
dataset of borderline ovarian serous neoplasm when compared to ovarian serous 
adenocarcinoma (Fig. 9). With the raw data obtained, a logistic regression was 
completed which considers the binary outcome of cancer state (comparing the two 
stages), utilising a sample size of 74 patients. The intent of the model is to use the 
gene expression data as a predictor of cancer state. ONCOMINE uses log2 median-
centred intensity expression values. 

 



 
Figure 9. Comparison of Selected Genes in Anglesio Ovarian Over-expression in Ovarian Cancer 
Type: Ovarian Carcinoma. (Data reproduced using ONCOMINE software from an original study by 
Anglesio MS, Arnold JM, George J, Tinker AV, Tothill R et al. (2008) Mutation of ERBB2 provides a 
novel alternative mechanism for the ubiquitous activation of RAS-MAPK in ovarian serous low 
malignant potential tumours. Molecular Cancer Research Vol. 6 pp. 1678-1690) 

 
 

The classification table (Table 1) shows that 98% of patients were correctly classified 
into their respective cancer state, which demonstrates that the model has a good 
predictive capability and is adaptive for use in patients who do not form part of the 
dataset.  

 

 

 

 

 

Table 1. Classification of Cancer State Based on Gene Signature 

The parameter coefficients in a multiple logistic regression equation (Table 3.2) may 
be interpreted as the change in the log odds of the cancer being the latter grade for a 
one-unit change in the expression of each gene. An economical logistic regression 
was also undertaken which found the genes ARNT, HSP90AA1 and TOP2A to be 
significantly associated with the outcome of the latter grading and a model which 
utilised these three genes had 95.9% predictive capability. Preliminary validation of 
the original model was undertaken utilising a novel dataset which demonstrated a 
35% predictive capability. An additional cross-validation was conducted 
using only the three genes found to be significantly associated with the 
outcome under the economical multiple regression model and resulted in a 

Observed Predicted 
Outcome Percentage Correct 
Borderline Severe 

Outcome 
Borderline 30 0 100.0 
Severe 1 43 97.7 

Overall Percentage   98.6 

 



25% predictive capability. 

 

 

 

 

 

 

 

 

Table 2. Parameter Coefficients & Odds Ratios: Multiple Logistic Regression Model 

Observing the results to be sensitive to the values of ARNT in the validation sample, 
a further cross-validation was conducted excluding the ARNT gene from the ten 
gene signature. This resulted in a 75% predictive capability which may be compared 
with the 98.6% predictive capability of the original model; it is to be expected that the 
predictive capability would be lower in the validation set since the model is tailored to 
the original dataset. The performance of the model with the validation sample in the 
cross-validation of all genes appeared to be due to the underexpression of the ARNT 
gene in the validation sample data (which was overexpressed in the original data 
set) and led to a fourth sensitivity analysis which manipulated the gene expression 
values of ARNT to demonstrate overexpression and thus increased the predictive 
capability of the model from 25% to a more respectable 70%.  

Gene expression values were then obtained in chemoresistant cell lines and these 
were compared to the chemosensitive cell lines for the drug tanespimycin (Fig. 10), 
as initial observation of the heat maps illustrated a notable difference in gene 
expression for the two different categories of chemoresponse (resistant and 
sensitive). The statistical significance of the individual genes when considering the 
use of multiple genes must be considered, as the usual ‘cut-off’ forms 5%, however 
with multiple genes, the value must be stricter. Since ten genes have been selected, 
the new point below which indicates statistical significance is 0.5% (p≤0.005) which 
subsequently indicates that TYMS and SLC2A3 are the two genes which 
demonstrate statistical significance for overexpression and are likely to impact the 
outcome of chemosensitivity to tanespimycin. HSP90AA1 is also borderline for its 
impact on chemosensitivity. All other genes failed to demonstrate statistical 
significance (p≤0.005) for expression differences and ultimately will have no 
significant effect on the outcome of chemoresponse. 

Gene Name Parameter 
Coefficient 

Odds Ratio 

TOP2A 3.113 22.495 
ARNT 7.644 2088.549 
VEGFA -.231 .793 
TYMS -.639 .528 
PGF 2.707 14.986 
CASP10 1.662 5.271 
MTOR .447 1.563 
HSP90AA1 3.880 48.405 
SLC2A12 .386 1.471 
SLC2A3 .706 2.026 
Constant -32.549 .000 



 
Figure 10. Comparison of Selected Genes in Barretina CellLine Over-expression in Tanespimycin 
Sensitive - Ovarian Cancer Cell Line log2 median-centered intensity (Data reproduced using 
ONCOMINE software from an original study by Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin A et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer 
drug sensitivity. Nature Vol. 492 pp. 290). 

 
 
Following the analysis utilising data generated from ONCOMINE, Ingenuity 
Pathways Analysis (Ingenuity® Systems, 2013) was utilised as a tool to search for 
and demonstrate where existing research has identified relationships between the 
molecules that make up the signature and their interactions with other molecules 
relating to ovarian cancer (Fig. 11). Since previous research indicated angiogenesis 
was a key aspect to tumour progression, the relevant genes to angiogenesis were 
then distinguished (Fig. 12) and the specific relationships to the signature were then 
isolated and highlighted (Fig. 13). Downstream effects of activating cisplatin (Fig. 14) 
and subsequently tanespimycin (Fig. 15) independently were also assessed.  
 
 



 
Figure 11. Generalised Signature and Common Links Between Molecules. Ingenuity® Systems 
(2013) Ingenuity Pathways Analysis Ingenuity Systems Available from: www.ingenuity.com 
[Accessed: 07/12/2013] 



 
Figure. 12. Molecules Common to Angiogenesis and the Chosen Signature. Ingenuity® Systems 
(2013) Ingenuity Pathways Analysis Ingenuity Systems Available from: www.ingenuity.com 
[Accessed: 07/12/2013] 



 
Figure 13. Limited Mapping of Molecules to the Signature and Key Molecules. Ingenuity® Systems 
(2013) Ingenuity Pathways Analysis Ingenuity Systems Available from: www.ingenuity.com 
[Accessed: 07/12/2013] 

 
 

 
Figure 14. Downstream Effects of Activating Cisplatin. Ingenuity® Systems (2013) Ingenuity 
Pathways Analysis Ingenuity Systems Available from: www.ingenuity.com [Accessed: 07/12/2013] 

 



 

Figure 15. Downstream Effects of Activating Tanespimycin. Ingenuity® Systems (2013) Ingenuity 
Pathways Analysis Ingenuity Systems Available from: www.ingenuity.com [Accessed: 07/12/2013] 

 

Discussion 

Outcome of Disease 

Data analysis revealed that the genes selected to form the genetic signature, based 
on preliminary research, demonstrated varying degrees of overexpression in ovarian 
serous adenocarcinoma when compared to normal ovarian tissue. Further data 
analysis also revealed a difference in expression values in the two different stages of 
cancer: borderline ovarian serous neoplasm and ovarian carcinoma. The 
classification model, having a 98.6% predictive capability, indicated that the gene 
signature was highly representative of changing cancer state which could 
demonstrate the importance of these genes in the progression of ovarian cancer. 
When the three genes significantly associated with the outcome of disease and 
controlling the expression of hypoxia inducible factor 1 beta (HIF-1β – alias ARNT), 
heat-shock protein 90 (HSP90AA1) and topoisomerase 2-α (TOP2α)) were utilised in 
an economical logistic regression, the predictive capability remained high at 95.9%, 
demonstrating the potential for the gene profiling of just three genes to predict 
disease staging. 

When the data relating to the genes is considered, it can be seen that HIF-1β, 
HSP90AA1 and placental growth factor (PGF) were over-expressed in ovarian 
cancer compared to normal ovarian cell lines and all had a large impact on the 
outcome of disease state (although PGF was not significantly associated). Research 
suggests that HIF-1α gene expression is upregulated in cancer, as are glucose 



transporters (Dachs, G. & Tozer, G. 2000). However HIF1-β was overexpressed i.e. 
the beta subunit of hypoxia inducible factor 1. The overexpression of HIF1-β is likely 
to be a consequence of the requirement to participate in mechanistic dimerisation 
with HIF-1α for receptor function (Semenza, et al 1997). The role of HIF, previously 
identified as an angiogenic stimulant, is likely to explain the overexpression when the 
dependency of ovarian cancer on the angiogenesis cascade is considered. It was 
also noted that there was a large amount of variation between the two datasets in 
the expression of HIF-1β; which, when just the three significantly associated genes 
were utilised in a cross-validation of the economical multiple regression model, 
negatively impacted on its predictive capability, reducing it to 25%. This could be 
attributed to sample variation, as the origin of the samples is unknown. However, 
when the expression values in the validation sample were manipulated in a further 
cross-validation to display overexpression, the predictive capability increased to 70% 
which is more comparable to the model with the original dataset. It was expected 
that the predictive capability would be lower, since the model was tailored to match 
that of the original dataset and there will have been natural inter-sample 
characteristic variation.  

The anticipated upregulation of glucose transporters in cancer was reflected in the 
data, with both GLUT-3 and GLUT-12 overexpressed in ovarian serous 
adenocarcinoma when compared to normal ovarian cells. Since glucose transporters 
are essential for enhancing glucose uptake for glycolysis in hypoxic conditions, it 
would be expected that GLUT-3 and GLUT-12 gene expression would increase with 
cancer progression, leading to a greater impact on disease outcome. However, 
GLUT-3 and GLUT-12 did not have a significant impact on the outcome of disease 
state when borderline compared to established cancer was considered. Additionally, 
the data corresponds to results of published research since higher expression of 
hypoxia-inducible factor would be expected to increase the expression of glucose 
transporters (Dachs & Tozer, 2000). 

Angiogenesis has been identified as a key process in ovarian cancer progression 
and research supports the important role played by vascular endothelial growth 
factor alpha (VEGFα) in angiogenesis. Whilst the data correlated with this research 
and shows its overexpression in cancer when compared to normal cells, the VEGF� 
expression levels had little impact on disease outcome. As was the case with GLUT-
3 and GLUT-12, the overexpression of VEGF could be a consequence of HIF 
overexpression. It would also have been expected that VEGFα would have 
presented a greater influence on disease outcome, since revascularisation has been 
identified as essential to disease initiation and progress. HSP90, involved in the 
regulation of HIF and VEGF in the angiogenesis cascade (Fig. 1.3), also had a 
significant impact on disease outcome. This was as expected, since HSP90 
functions to stabilise growth factors such as VEGF and has also been demonstrated 
to stabilise p53 mutations in cancer (Asher et al 2001). As previously identified, the 
pathogenesis of ovarian cancer may progress along one of two pathways: low-grade 
pathway and high-grade pathway (Fig. 1.6), with the high-grade pathway commonly 
including tumours that have a characteristic p53 mutation and tend to be much more 
aggressive. Additionally, the category of type II tumours includes high grade serous 
carcinomas. It may be of consideration that the cell lines utilised in the original 
dataset and validation sample are likely to fall into the high-grade pathway and that 
of type II tumours, thus supporting the suggestion that there may have been an 



inherent p53 mutation, with HSP90 serving a protective function over the unstable 
protein.  

Ingenuity pathways analysis was also utilised to generate common relationships to 
the chosen genes which form the genetic signature. When an ‘angiogenesis overlay’ 
was applied to the molecules (Fig. 3.5), the IPA database supported research in 
showing that vascular endothelial growth factor stimulates and increases 
angiogenesis through activation of the vascular endothelial growth factor receptor-2 
(VEGF-2) (Carmeliet et al 2001). IPA also demonstrated the relationship between 
VEGF and PGF, highlighting research which determines that PGF is involved in 
angiogenesis through its heterodimerisation with VEGF (Cao et al 1996). Whilst the 
mammalian target of rapamycin (MTOR) was overexpressed in cancer when 
compared to normal cells, it did not appear to have a significant outcome on disease 
state. Data on IPA demonstrated a link between MTOR and angiogenesis, identifying 
that the MTOR protein is necessary for angiogenesis in human breast tissue (Wen et 
al 2012). Similarly, the same effect may occur in ovarian tissue and overexpression 
of this protein may be attributable to its role in angiogenesis. 

Topoisomerase II alpha (TOP2A) also had a large impact on disease outcome and 
its overexpression in cancer cells when compared to healthy cells corresponded with 
existing research (Trinh et al 2013). The role of TOP2A as a key agent in DNA 
metabolism (Depowski et al 2000) would explain the increase in expression in 
cancer cells. Thymidylate synthase, however, also had minimal impact on disease 
outcome but its overexpression is likely to be a marker of poor prognosis, as seen in 
other forms of cancer (Rahman et al 2004). It was also noted that caspase 10 was 
over-expressed in ovarian cancer cells when compared to normal ovarian cells, 
which contrasts with published research that shows caspases to be under-expressed 
in cancer (Philchenkov et al 2004). It would be expected that an increase in caspase 
expression would prove proapoptotic in these cancer cells. 

Furthermore, key relationships were identified between the signature and other 
common molecules on IPA (Fig. 3.4). VEGF-α, PGF and MTOR were all identified as 
being involved in ovarian cancer signalling, as was the p53 tumour suppressor gene. 
IPA also revealed that HSP90AA1 has been discovered as binding to p53 (Yu et al 
2002). Additionally, HIF-1α, HIF-1β and PGF were further identified as involved in 
VEGF signalling pathways which also supports the research already covered and the 
expression patterns noted within the data analysis.  

Chemosensitivity 
Although TOP2A was not significantly over-expressed in Tspimycin sensitive cell 
lines, its overexpression in cancer when compared to normal cells reaffirms the 
current use of topoisomerase inhibitors as cytotoxic agents. However, research has 
shown that in tumour cells previously treated with platinum compounds, TOP2A 
expression levels decreased which could be a key factor in the development of 
chemoresistance to topoisomerase inhibitors (Chekerov et al 2006). 

Thymidylate synthase was the most statistically significant gene of the signature for 
sensitivity to tanespimycin, and was ranked third of all genes analysed in the original 
study. The role of thymidylate synthase as an enzyme involved in DNA synthesis 
and repair explains its overexpression in tumour cells, however its role and that of 
GLUT-3 in tanespimycin sensitivity is unknown and further experimental research 



may yield more detailed information. HSP90AA1 demonstrated borderline 
significance for sensitivity to tanespimycin, however it was expected that it would 
have been ranked higher due to tanespimycin mechanistically acting as a HSP90 
inhibitor. 

Using the molecule activity predictor on IPA allowed for the prediction of the 
downstream effects of cisplatin (Fig. 3.7). The results demonstrated that cisplatin 
inhibits HSP90AA1 (Donnelly & Blagg, 2008) and also inhibits hypoxia-inducible 
factor-1 which subsequently leads to inhibition of VEGF-α (McMahon et al 2006). 
The same method predicted that activation by tanespimycin (Fig. 3.8) would increase 
the expression of VEGF and would increase the inhibition of HSP90AA1. Whilst the 
predicted increase in VEGF by tanespimycin would be expected to promote tumour 
vascularisation, it would also be expected to enhance drug delivery to tumour cells 
through a greater vascular network (and thus blood supply) to the cells. 

The discovery that overexpression of vascular endothelial growth factor may reduce 
the cytotoxicity of cisplatin has highlighted the importance of developing new 
chemotherapeutic regimes for patients with this characteristic and consequently, 
combination therapy with paclitaxel and tanespimycin has recently been developed 
(Katragadda et al 2013). Further research has shown that tanespimycin inhibits the 
Akt pathway through its inhibition of HSP90 which sensitises tumour cells to the 
effects of paclitaxel. The synergistic relationship between tanespimycin and 
paclitaxel could be exploited to maximise the therapeutic outcome of this regime. 
This demonstrates the effectiveness of tanespimycin in the sensitisation of 
neoplastic cells to a proapoptotic stimulus (Solit et al 2003). Data from experimental 
research revealed that HSP90α, HSP90β, HSP70, HSP72 and HSP27 are the 
proteins in ovarian adenocarcinoma cells which are responsive to treatment with 
tanespimycin and suggested, contrary to findings, that ovarian cancer cells which 
have upregulated these proteins are more likely to develop greater resistance to 
tanespimycin therapy. Furthermore, the expression of HSP27 was identified as 
increased by tanespimycin and lower expression of this protein was associated with 
tanespimycin sensitivity (Maloney et al 2007). The inconsistencies in these findings 
provide further research opportunities.  

 
Conclusion 
The high predictive capability of the model (p≤0.05), despite being lower in the 
validation dataset, demonstrated potential for the implementation of genetic profiling 
of ovarian cancer patients to predict the grade of their cancer and thus form the 
basis for selecting a personalised chemotherapeutic regime. The gene expression 
data in the comparative grades of ovarian cancer combined with the information 
generated from ingenuity pathways analysis demonstrated that many of the genes in 
the gene signature were likely to be involved in angiogenesis which would underpin 
their role in disease progression and significant overexpression in the higher grade 
of ovarian cancer.  

Additionally, the impact of overexpression of thymidylate synthase, glucose 
transporter 3 and heat-shock protein 90-AA1 on tanespimycin sensitivity could 
indicate that patients who exhibit the characteristic overexpression of these genes 
would benefit from treatment with this drug. Further experimental research to 
determine the correlation between increased tanespimycin sensitivity and the 



overexpression of these genes would be necessary to determine the mechanism of 
the effect their overexpression has on tanespimycin.  
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