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A B S T R A C T 

This commentary examines the potential for electronic textiles (e-textiles) to 
form part of the solution to improved thermal comfort for individuals whilst 
reducing the high energy consumption of heating and cooling systems. The 
article begins by introducing factors that influence thermal comfort for 
individuals and the weaknesses of the current thermal management systems. 
The commentary presents e-textiles as a promising solution to these challenges 
by demonstrating an option that can provide the individual with enhanced 
thermal comfort without reliance on centralised heating systems, and crucially, 
does so in a manner that minimises the need for individuals to change their 
behaviour. The article concludes with a view of groundbreaking research that 
is pushing the boundaries of current e-textile technological capabilities.   

 

Introduction 
 
September 2022. The cost of living and, acutely, the 
cost of fuel and energy has increased inordinately 
within the UK (The Bank of England, 2022). 
Campaigns such as heat the human not the home are 
gaining traction as people look for more affordable 
methods to maintain a comfortable body 
temperature (Monro, 2023). There is a pressing 
need for innovation in strategies to maintain 
thermal comfort (Friends of the Earth & the 
Marmot Review Team, 2022). Thermoregulating 
electronic textiles (e-textiles) are an emerging 
technology with the potential to fill this gap. This 
commentary gives a brief overview of human 
thermoregulation and a discussion on some of the 
core challenges within thermal comfort 
management, particularly within the UK and 
Europe, such as the environmental impact of 
building heating systems and the effects of fuel 

poverty. The commentary highlights emerging e-
textile technologies as a potential solution to these 
challenges, focusing on two important obstacles to 
their market readiness; comfort and integration into 
a circular economy, which are addressed by 
contemporary research. 
 
Thermal comfort and the human 
 
Since the Mid-Pleistocene, humans have used 
clothing to aid thermal homeostasis (the biological 
mechanisms that keep the body at an optimal 
temperature) and manage thermal comfort 
(Gilligan, 2010). The vacillating temperatures 
through diurnal rhythms and shifting seasons have 
led to a reliance on additional behavioural, or 
technological, solutions since the first human 
sought shade in a cave and struck wood to create 
fire.  
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Maintaining an optimal body temperature is critical 
for human health, well-being, and productivity. At 
its most extreme, inadequate thermoregulation is 
fatal. If the human core body temperature increases 
or decreases by 1°C, physiological responses such as 
shivering or sweating initiate (Figure 1.) Further 
increase or decrease of the core body temperature 
leads to increasingly severe health consequences 
such as brain damage, organ failure, and death 
(Song, 2011). At lower levels of thermal discomfort 
negative effects on mental and physical 
performance, and well-being can be observed. 
Optimum productivity is achieved by individuals 
working in a comfortable environment (Castaldo et 
al., 2018; Morris et al., 2020; Song, 2011). 
Accordingly, thermal discomfort negatively 
impacts individuals, but also businesses that suffer 
the economic impacts of decreased worker 
productivity. A comfortable thermal environment is 
a necessity to mitigate these effects. 
  

 
Figure 1: Physiological responses to temperature.  
 
It is well established that the human connection 
with the thermal environment interweaves with 
multifarious factors including biological influences 
(such as metabolic rates), cultural effects, previous 
thermal experience, and socioeconomic impacts 
(Castaldo et al., 2018; Faruk et al., 2021; Nicol et al., 
2012; Tabor et al., 2020). This implies that creating 
a thermal environment that is optimal for all 
individuals using a shared space is infeasible.  

Globally, many thermal comfort-building standards 
have been underpinned by Fanger’s predicted mean 
vote (PMV) model since the 1960s (Hoof, 2008). 
The PMV model is based on healthy adults in North 
America and Western Europe. As stated above, 
even amongst healthy adults, individual differences 
in the perceptions of, and preferences in, thermal 
environments vary considerably (André et al., 2020; 
Fountain et al., 1996; Hoof et al., 2010). Those who 
fall outside this ‘healthy adult’ demographic, such as 
the elderly, are likely to be at a biological 
disadvantage when it comes to maintaining an 
optimal body temperature, putting them at higher 
risk of temperature-related illness (Anderson et al., 
1996; Fu et al., 2016; Giamalaki & Kolokotsa, 2019). 
Correspondingly, current thermal comfort 
standards in building design are not appropriate to 
meet the thermal needs of significant proportions of 
the populations that rely upon them.   
 
The Global North has developed an unhealthy 
dependency on building heating, ventilation, and 
cooling (HVAC) systems for the provision of 
thermal comfort. HVAC systems deplete resources 
from the National Grid at inexorable rates, 
contributing 16% to global energy consumption and 
thus the climate crisis (Cai et al., 2017; Ürge-
Vorsatz et al., 2015). Recent trends in increased 
homeworking may increase this HVAC energy 
consumption, however, the environmental benefits 
such as reduced commuting may still lead to a net 
benefit for the environment (Wang et al., 2022). The 
detailed evaluation of this is outside the scope of this 
commentary. 
 
Despite this behemothic burden on our 
environment, HVAC systems do not provide 
sufficient thermal comfort for large sections of 
society; either due to systematic implementation of 
thermal standards that are aimed at ‘the average 
person’ as established above, or for individuals that 
are unable to afford the cost of fuel, depressing them 
into fuel poverty. Fuel and energy poverty are 
enduring challenges worldwide that are 
consistently correlated to temperature-related 
morbidity and mortality (Morris et al., 2020; Nicol 
et al., 2012; Tham et al., 2020). Under the recent 



                                                                                              3 
 

rising energy costs combined with increasingly 
erratic weather patterns, the pervasiveness of fuel 
poverty is increasing (Davillas et al., 2022). In 2018, 
7.3% of the EU population was subject to fuel 
poverty (Friends of the Earth & the Marmot Review 
Team, 2011). Research in England has shown that 
colder homes bring a 20% increase in the risk of 
‘excess winter deaths’ (Friends of the Earth & the 
Marmot Review Team, 2011) and emphasised by 
Public Health England (2010): ‘We could prevent 
many of the yearly excess winter deaths – 35,000 in 
2008/09 – through warmer housing’ (p. 5). 
 
It is therefore established that thermal comfort is 
vital for human health, well-being, and economic 
productivity, but that contemporary systems for 
providing thermal comfort to humanity, clothing, 
and HVAC systems, are inadequate. Conventional 
clothing, i.e. commonly available garments 
composed of simple fibres and fabrics without 
enhancement to the textile’s thermal properties 
(Figure 2), is insufficient to provide thermal comfort 
during moderate changes in temperature or 
circumstance. HVAC is both systematically biased 
towards an average person thus deficient for many 
individuals, and environmentally damaging. A 
solution is required that provides the individual 
with control over their thermal environment, but 
without the high energy consumption that leads to 
climate impacts and energy accessibility issues such 
as fuel poverty.  
 
Emerging e-textile technologies 
 
The e-textile market is forecast to increase by a 
compound annual growth rate (CAGR) of 18% by 
2028 (Market Growth Reports, 2022). The state of 
the art within the field has demonstrated flexible 
low-cost e-textile sensors and actuators have 
applications within industries as diverse as 
structural monitoring in construction; health and 
medical monitoring; soft robotics; clothing for 
extreme environments, strain sensors, detection of 
biochemicals, and personal thermal management 
(PTM) (Mohan et al., 2020; Coppedè et al., 2014; 
Gomes et al., 2018; Han et al., 2018; Polanský et al., 

2017; Promphet et al., 2020; Sekar et al., 2019; 
Sempionatto et al., 2019; Seyedin et al., 2018).  
 
E-textiles can improve individual thermal comfort 
by significantly enhancing the thermal performance 
of conventional clothing (Cai et al., 2017; Hazarika 
et al., 2021; Lan et al., 2021; Pollard et al., 2019; 
Tabor et al., 2020; Tat et al., 2022). The worldwide 
cultural permeation of using clothing to aid 
thermoregulation could enable e-textiles to 
conform to this social norm and displace HVAC 
usage without requiring a substantial behaviour 
change. 
 

 

Figure 2: Conventional clothing (Stocker, 2023) 

E-textiles that enhance thermoregulation through 
temperature sensing and heating are commercially 
available but remain in niche markets, such as snow 
sports and motorcycling as demonstrated in Figure 
3 and Figure 4 (Ralph Lauren, 2019; Motorrad, 
2023; Odlo, n.d.). These technologies are expensive 
and often bulky with evident electronic components 
or external hardware which requires removal before 
washing and changes the aesthetic of the garment. 
This makes the e-textiles functional but 
conspicuous, and thus misaligned with traditional 
consumer clothing preferences of aesthetic appeal 
and comfort, and thus go against the grain when 
changing individual behaviour (Mintel, 2020; The 
Behavioural Insights Team, 2014). However, recent 
research is advancing PTM e-textiles closer to that 
exemplar e-textile that invisibly integrates thermal 
control into garments.  
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Figure 3: Example of thermoregulating ski jacket (Ralph 
Lauren, 2019) 
 

Figure 4: Example of thermoregulating base layer 
(Odlo) 
 
In the recent work of Wang et al. (2022), 2D 
titanium carbide nanomaterial known as MXene, 
was spray coated onto an aramid nonwoven fabric 
to create a textile-based heater that reached a 
temperature of 253°C under the application of 5V 
external voltage. Similarly, Zhang et al. (2022) have 
reported a Joule heater that reaches 121°C at 1.5V 
of input voltage based on a copper sulphide film 
with embedded copper sulphide nanospheres coated 
onto polyethylene terephthalate (PET) fabric using 
chemical deposition. These outstanding examples 
have harnessed the power of nanotechnology to 
induce excellent electrothermal performance and 
demonstrate technological advancements whereby 
heating functionality can be achieved with 
exceptionally low voltage input. This implies that 
minimal componentry will be required to power the 
e-textile, thus taking the technology a step closer to 
‘invisible integration’ with greater comfort. 
 
To date, advances in heating and temperature 
sensing e-textile developments far exceed that of 
advancements in cooling technologies. A 
publication from March 2022 has reported the 
development of a thermoelectric woven textile 
using bismuth antimony telluride/bismuth 
tellurium selenide alloy, polyimide, gallium-indium 
liquid metal and polydimethylsiloxane (PDMS) to 
create a textile that delivers solid-state cooling of 
3.1°C (Y. Zheng et al., 2022). Whilst this 
technology is nascent and requires further 
development to integrate it into a truly intelligent 

garment, it takes the field a step closer to that holy 
grail of wearable thermoregulating e-textiles: a 
garment that senses the skin temperature, and then 
reacts by heating or cooling the individual to enable 
that perfect thermal balance. 
 
Comfort 
 
Comfort in clothing pivots upon four elements: 
Thermophysiological (heat/moisture balance); 
ergonomic (freedom of movement, stretch); skin 
sensorial (mechanical sensations such as soft vs stiff, 
smooth vs rough); psychological (style, trends, 
cultural or personal ideologies) (Meechals, as cited 
in Dolez & Vermeersch, 2018). Wearable e-textiles 
must provide comfort, in the broadest sense, to be 
viable alternatives to conventional clothing (Luo et 
al., 2020; Mokhtari et al., 2020; Yu et al., 2020; 
Zhang et al., 2017). Within current e-textile 
literature, thermophysiological comfort has been 
frequently analysed via assessment of water vapour 
transmission rate and air permeability (Luo et al., 
2020; X. Zheng et al., 2022). Several studies have 
considered ergonomic factors such as stretch and 
stiffness (Ahmed et al., 2020; Dong et al., 2020) 
(Wang et al., 2021; Y. Zheng et al., 2022). However, 
few studies have yet examined skin sensorial and 
psychological comfort within the field of e-textiles. 
This leaves an unmistakable direction for further 
research, particularly in collaboration with industry 
and commerce to address psychological comfort. 
 
A fundamental challenge in achieving comfort in e-
textiles arises from joining technologies. Most 
current e-textiles require a connection between the 
soft, pliable, stretchable textile fabric, and a rigid 
non-textile component (Stanley et al., 2021). This 
connection typically relies upon joining 
technologies such as snap connectors, conductive 
pastes, or soldering. The result is a source of both 
discomfort for the user and weakness within the e-
textile structure. The current technologies are 
satisfactory for the current commercial applications 
(e.g. snow sports and motorcycling) which highly 
value functional performance and bulky layers for 
protection.  However, for e-textiles to reach their 
full potential, further development is needed to  
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Figure 5: Elements of a circular economy (PBL Netherlands Environmental Assessment Agency, 2019) 

invisibly integrate the joining technologies. Recent 
research has sought novel materials such as 
nanomaterial paste or (encapsulated) liquid metal, 
and strategies, such as 3D printing and ultrasonic 
nanosoldering for creating connections points (Du 
et al., 2017; Seoane et al., 2019; Simegnaw et al., 
2021; Suarez et al., 2017).   
 
Durability and integration into a circular 
economy  
 
The textile industry is a source of substantial 
environmental impact with an array of energy and 
water consumption, greenhouse gas emissions, 
waste effluents, and significant quantities of textiles 
culminating in landfill (Gong et al., 2022; Luo et al., 
2022). E-textiles pose a particular challenge within 
sustainable practices since, within current 
technologies and recycling logistics, e-textiles are 

complex if not impossible to recycle and are not 
biodegradable.  
 
Durability is the pièce de résistance of the textile 
circular economy. The more durable a garment is 
(both physically and emotionally), the longer it 
survives in the use phase (Figure 5). Numerous 
studies have examined aspects of e-textile 
durability, such as washability, abrasion resistance 
and performance degradation over time (Afroj et al., 
2020; Atakan et al., 2019; Gong et al., 2022; Uzun 
et al., 2019). Recent research has demonstrated a 
culmination of previous works through the 
development of a nanocomposite-based heating e-
textile that has successfully undergone durability 
testing including UV light exposure, washing, 
temperature extremes, and bend testing (Hazarika 
et al., 2022). This extensive analysis lays a 
foundation for future developments of truly durable 

https://www.fieldsjournal.org.uk/
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e-textiles. Notwithstanding, it can be anticipated 
that even the most durable garment will eventually 
degrade beyond use. In this scenario, the seminal 
paper by Gong et al. (2022) leads the way in the 
development of decidedly environmentally friendly 
e-textiles by using biobased polylactic acid (PLA) 
and gallium indium alloy to create an e-textile that 
is durable (abrasion and wash tested), 
biocompatible, and can be separated and recycled in 
a closed loop. 
 
Conclusion 
 
Thermoregulation is vital for survival; thermal 
comfort is vital for health and productivity. Current 
solutions for attaining thermal comfort are rapidly 
depleting both natural resources, and individual 
microeconomic resources. This combination creates 
an apt juncture to instigate change, as society seeks 
ways to attain thermal comfort with minimal 
energy consumption. This transition, although 
difficult, could be eased with the development and 
use of thermoregulating e-textiles. E-textile 
research has made key advancements in the past five 
years towards the ‘invisible integration’ of 
electrothermal performance in textiles. Further 
research on cooling technologies, alongside 
continuing work to improve both comfort and 
durability is ongoing. 
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